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Abstract

We introduce a model of homophily that does not rely on the assumption of ho-

mophilous preferences. Rather, it builds on the dual process account of Theory of Mind

in psychology which focuses on the role of introspection in decision making. Homophily

emerges because players find it easier to put themselves into the shoes of a member of

their own group. Endogenizing the drivers of homophily permits us to derive novel com-

parative statics results and to explain commonly observed features of social and economic

networks.
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1. Introduction

Homophily, the tendency of people to interact with similar people, is a widespread phe-

nomenon that has been studied in a variety of different fields, ranging from economics (Cur-

rarini, Jackson, and Pin, 2009), to organizational research (Borgatti and Foster, 2003), so-

cial psychology (Gruenfeld and Tiedens, 2010), political science (Mutz, 2002), and sociology

(McPherson, Smith-Lovin, and Cook, 2001). Homophily can give rise to segregated social and

professional networks, and can affect investment in education (Calvó-Armengol, Patacchini,

and Zenou, 2009), wages and employment (Patacchini and Zenou, 2012), and diffusion of in-

formation (Golub and Jackson, 2012). Thus, understanding the root sources of homophily is

of paramount importance.

Much of the existing literature explains homophily by assuming a direct preference for

associating with similar others (see Jackson, 2014, for a survey). However, without a theory

of the determinants of these preferences, it is hard to explain why homophily is observed in

some cases, but not in others (beyond positing homophilous preferences only in the former

settings).

We provide a theory of homophily that does not assume homophilous preferences. Rather,

in our model, a preference to interact with similar others is a natural outcome of individuals’

desire to reduce strategic uncertainty. This framework delivers new testable implications and

allows us to explain commonly observed features of social and economic networks.

In our model, players belong to different groups that differ in their mental models, i.e.,

perspectives, interpretations, narratives, and worldviews (Craik, 1943). Shared mental models

facilitate social interactions. Many social interactions are governed by unwritten rules or

customs that prescribe the appropriate course of action.1 These prescriptions are not universal.

In particular, the prescription may be sensitive to the context. For example, offering to share

food may be appropriate in some settings (e.g., family dinners) and not in others (e.g., business

dinners), while in others it is unclear (e.g., social outings with colleagues). Individuals that

share the same mental model tend to view the same prescription as focal, while individuals

with different mental models are more likely to disagree on what is focal (e.g., is this situation

more like a formal dinner or a family-style meal?); see Denzau and North (1994). Thus, the

likelihood that individuals follow the same prescription is greater when they belong to the

same group.2 Accordingly, if individuals benefit from coordinating their activities, then they

1These ideas have a long history in both philosophy (Hume (1740), Lewis, 1969) and in economics (Schelling,

1960). See, e.g., Camerer and Vepsailanen (1988), Bacharach (1993), Sugden (1995), Skyrms (1996), Sugden

(1998), Camerer and Knez (2002), Weber and Camerer (2003), and Camerer and Weber (2013) for more recent

perspectives.
2This is in line with the suggestion of Kreps (1990) that culture is a source of focal principles. There is
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have an incentive to associate with members of their own group.

While intuitive, it is difficult to capture these ideas using standard models. Standard

game-theoretic models cannot model how mental models affect behavior. Standard models

are thus unable to explain why players may find it easier to coordinate with their own group.

To formally model these ideas, we build on the dual process account of Theory of Mind in

psychology (see Kets and Sandroni, 2015). The dual process account of Theory of Mind is

an influential theory in psychology that posits that an individual initially reacts instinctively,

and then adapt his views by reasoning about what he would do if he were in the opponent’s

position.3

To capture this, we assume that each player has some initial (random) impulse telling him

which action is appropriate. A player’s first instinct is to follow his impulse. By introspection,

the player realizes that the opponent may also have an impulse to choose a certain action.

In addition, he realizes that if his opponent is similar to him, his opponent’s impulse may be

similar to his own. So, impulses can be used to form initial beliefs. This may lead the player

to adjust his action and not act on impulse. The reasoning does not stop here, however. If

the player thinks a little more, he realizes that his opponent may have gone through a similar

reasoning process and may have adjusted her action. This leads the player to revise his initial

belief, and so on, up to arbitrarily high order. The limit of this procedure, where players

go through the entire reasoning process in their mind before taking a decision, defines an

introspective equilibrium.

In our model, players are matched to play a coordination game. In line with evidence from

neuroscience and psychology (Elfenbein and Ambady, 2002; de Vignemont and Singer, 2006),

we assume that players find it easier to anticipate the instinctive reactions of members of their

own group. Thus, impulses are more strongly correlated within groups than across groups.

When players use introspection to decide on their action, they are more successful at co-

ordinating with their own group, as we show. As a result, they face less strategic uncertainty

when interacting with players who are similar to them. This gives players an incentive to

associate with their own group. We consider an extended game where players can seek out

members of their own group by choosing the same project (e.g., a hobby, profession, or neigh-

borhood). The resulting level of homophily can be high even if it is costly to seek out the

substantial experimental evidence that there is more coordination and less strategic uncertainty when players

interact with their own group; see Section 1.1.
3See Epley and Waytz (2010) for a survey of the research on Theory of Mind in psychology. The dual

process account of Theory of Mind relies on a rapid instinctive process and a slower cognitive process. As

such, it is related to the two-systems account of decision-making under uncertainty, popularized by Kahneman

(2011). The foundations of dual processes theory go back to the work of the psychologist William James

(1890/1983).

3



own group and players do not have a direct preference for interacting with their own group.

In this sense, introspection and players’ desire to reduce strategic uncertainty are root causes

of homophily.

Our model produces unambiguous and intuitive comparative statics. In our model, the

level of homophily is determined uniquely and it depends on economic incentives and the

similarity in impulses. The level of homophily is higher if the stakes are high and if group

members are more similar (i.e., impulses are strongly correlated within a group). In fact,

regardless of the distribution over impulses, when coordination payoffs are high, the level

of homophily is necessarily high and is above and beyond what can be expected based on

direct preferences over projects or groups. Thus, the model produces a series of novel testable

implications. These predictions are difficult to obtain with standard game-theoretic models

or common refinements, as these do not incorporate the effect of identity on reasoning.

In an extension of the model, players choose how much (costly) effort to invest in meeting

others. The level of homophily can now be even higher. Intuitively, there can be a feedback

effect: if one group is the dominant group for a given project, in the sense that the majority of

the project participants belong to this group, members of this group have a greater incentive

to invest effort, even if the majority is only slightly larger than the minority. This, in turn,

increases the chances that members of the dominant group are matched with their own group,

further enhancing their incentives to form connections. This may lead more players from the

dominant group to choose the project, leading the majority to grow.

The cost of forming connections determines whether small differences in initial conditions

are amplified. If the effort cost is low, there is a substantial incentive to form connections.

This enhances the incentives to segregate, further increasing the incentives for the dominant

group to network. The resulting network consists of a tightly connected core of players from

the dominant group with a periphery of loosely connected members of the minority group,

in line with empirical observations (Jackson, 2014). On the other hand, if the effort cost is

high, the incentives to network are attenuated even for the dominant group. This reduces the

incentives to segregate, which further damps the incentives to form connections. The result is

a sparse network with low levels of homophily. This provides novel testable hypotheses about

how properties of networks change when the fundamentals vary. For example, the theory

predicts that high levels of homophily go hand in hand with a core-periphery structure.

This paper is organized as follows: after a brief literature review in Section 1.1, we present

our basic model in Section 2. Section 3 characterizes the level of homophily in the benchmark

model and presents the comparative statics. Section 4 extends the model to allow players to

choose their effort and uses this to study network formation. Section 5 concludes. Appendix B

shows that the main insights extend to settings where players signal their identity. All proofs
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can be found in the appendices.

1.1. Related literature

The literature on homophily typically assumes homophilous preferences and investigates

the implications for network structure and economic outcomes (e.g., Currarini, Jackson, and

Pin, 2009; Bramoullé, Currarini, Jackson, Pin, and Rogers, 2012; Golub and Jackson, 2012;

Alger and Weibull, 2013), with Baccara and Yariv (2013, 2016) and P¦ski (2008) being notable

exceptions. In a public good provision model, Baccara and Yariv show that groups are stable

only if their members have similar preferences. P¦ski shows that segregation is possible if

players have preferences over the interactions that their opponents have with other players.4

We propose a novel mechanism through which homophily can arise: players have an incentive

to interact with similar others if that reduces strategic uncertainty. This allows us to explain

the emergence of value homophily, that is, homophily based on similarities in attitudes and

beliefs (McPherson, Smith-Lovin, and Cook, 2001).

Mental models are often associated with identity or culture. Following the seminal work of

Akerlof and Kranton (2000), an emerging literature in economics studies the effect of identity

on economic outcomes. In much of this literature, an agent’s identity affects his payoffs, not

his reasoning. Our emphasis on the cognitive aspects of identity is consistent with a large

and growing literature in sociology and anthropology that views identity and culture as being

composed of mental models (or “schemas”) to interpret the world; see, e.g., DiMaggio (1997).

By modeling a player’s identity in terms of mental models, we are able to address a novel set of

questions such as how homophily varies with economic incentives.5 Greif (1994) stresses that

cultural beliefs may have an important impact on economic outcomes, but notes that a formal

analysis of the relations between cultural beliefs and economic outcomes is challenging, because

of the multiplicity that can result when beliefs are unrestricted. Here we impose simple and

intuitive assumptions on beliefs that are in line with experimental evidence which allow us to

derive unique predictions in a range of settings. Kuran and Sandholm (2008) take the culture

of a group to be defined by the preferences and equilibrium behaviors of its members. In our

model, groups may differ in their equilibrium behavior even if they have identical preferences.

Van den Steen (2010) shows that shared beliefs may lead to faster coordination in a learning

context, but does not study homophily.6 Crémer (1993) define culture as the shared knowledge

base of a group, and Kreps (1990) suggests that culture is a source of focal principles that

4Also see P¦ski and Szentes (2013).
5In Kets and Sandroni (2015), we explore the conditions under which diversity is optimal when players’

identity affects their strategic reasoning.
6Also, Van den Steen’s (2010) result requires payoff heterogeneity. No such heterogeneity is needed here.
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can help select an equilibrium. In our model, players who share a similar background have

similar behavioral tendencies. This provides a formal mechanism through which culture can

aid equilibrium selection.

The process we consider bears some resemblance with level-k models (Nagel, 1995; Stahl

and Wilson, 1995; Costa-Gomes, Crawford, and Broseta, 2001; Costa-Gomes and Crawford,

2006; Crawford, Costa-Gomes, and Iriberri, 2013).7 There are two important differences.

First, while the level-k literature focuses on deviations from equilibrium, we use the reasoning

process to select a unique equilibrium. Second, introducing payoff-irrelevant impulses into the

model permits us to study the effects of identity on reasoning.

Modeling the introspective process allows us to select a unique outcome in a range of

games. This allows us to derive clear comparative statics. This is not possible using a standard

equilibrium analysis (see Appendix A). Like other models that are used to explain homophily

and segregation, the games we study have multiple equilibria with sometimes very different

properties. Other papers have dealt with equilibrium multiplicity by focusing on the subset

of equilibria that satisfy a stability property (e.g., Alesina and La Ferrara, 2000; Bénabou,

1993; Sethi and Somanathan, 2004). However, such refinements are not always strong enough

to give uniqueness. In particular, in our setting, standard refinements have no bite. We thus

need a novel approach to obtain a unique prediction. As we show, taking into account players’

reasoning process is a powerful method to obtain uniqueness in a range of different settings.

Our work sheds light on experimental findings that social norms and group identity can

help players coordinate effectively, as in the minimum-effort game (Weber, 2006; Chen and

Chen, 2011), communication tasks (Weber and Camerer, 2003), the provision point mecha-

nism (Croson, Marks, and Snyder, 2008), risky coordination games (Le Coq, Tremewan, and

Wagner, 2015), and Battle of the Sexes (Charness, Rigotti, and Rustichini, 2007; Jackson

and Xing, 2014). Chen and Chen (2011) explain the high coordination rates on the efficient

equilibrium in risky coordination games in terms of social preferences. Our model provides an

alternative explanation, based on beliefs: players are better at predicting the actions of players

who belong to the same group. Our mechanism operates even if no equilibrium is superior to

another, as in pure coordination games.

7A closely related model is the cognitive hierarchy model (Camerer, Ho, and Chong, 2004). This model is

less closely related to ours; see Kets and Sandroni (2015).
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2. Coordination and introspection

There are two groups, A and B, each consisting of a unit mass of players. Members of these

groups are called A-players and B-players, respectively. Group membership is unobservable.8

Players are matched in pairs. Each player is matched with a member of his own group

with probability p̂ ∈ (0, 1]. In this section, the probability p̂ is exogenous. In Section 3, we

endogenize p̂. Players who are matched play a coordination game, with payoffs given by:

s1 s2

s1 v,v 0,0

s2 0,0 v,v , v > 0.

Payoffs are commonly known. The precise assumptions on payoffs are not critical: the key

assumption is that players have an incentive to coordinate.9

The game has two strict Nash equilibria: one in which both players choose s1, and one

in which both players choose s2. Thus, players cannot deduce from the payoffs alone how

others will behave. So, there is significant strategic uncertainty : players do not know what

the opponent will do. We build on the dual process account of Theory of Mind in psychology

to describe how players model their opponent and choose their actions. According to the dual

process account, people have impulses, and through introspection (i.e., by observing their own

impulse) players can learn about the impulses of others and thus form a conjecture about their

opponent’s behavior. Given this newly-formed conjecture, it may be optimal for a player to

deviate from his initial impulse. Upon introspection, they may realize that their opponent may

likewise adjust their behavior. In turn, this may lead them to revise their initial conjecture,

and so on (Kets and Sandroni, 2015).10

This is formalized as follows. Each player j receives an impulse ij = 1, 2. Impulses are

payoff-irrelevant, privately observed signals. If a player’s impulse is 1, then his initial impulse

8In our model, groups differ in the mental models that their members hold. While mental models are in

principle unobservable, there may be observable proxies. For example, in some cases, different demographic

groups tend to use different mental models (see, e.g., Page, 2007, for a discussion). If that is the case, group

membership (i.e., which mental model a player uses) is imperfectly observable. Our results extend to this

setting.
9For example, our results go through if payoffs are asymmetric, if one Nash equilibrium Pareto-dominates

the other, or if one of the Nash equilibria is riskier than the other, as long as the game is a low-potential

game in the terminology of Kets and Sandroni (2015). The results also extend to settings where there are skill

complementarities across groups, as long as they are not too strong.
10Robalino and Robson (2015) interpret Theory of Mind as the ability to learn other players’ payoffs, and

shows that this confers an evolutionary benefit in volatile environments.
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is to take action s1. Likewise, if a player’s impulse is 2, then his initial impulse is to choose

action s2.

Impulses may be partly shaped by players’ mental models. People with shared mental

models will often respond in a similar way to a given strategic situation, while people with

different mental models may respond differently. Players thus find it easier to anticipate the

instinctive response of members of their own group. To model this, we assume that impulses are

more strongly correlated within groups than across groups. Specifically, each group g = A,B

is characterized by a state θg = 1, 2. A priori, θg is equally likely to be 1 or 2; and the states

of different groups are independent. Conditional on θg = m, a g-player has an initial impulse

to choose action sm with probability q ∈ (1
2
, 1), independently across players.

This simple model ensures that players are more likely to have the same impulse if they

belong to the same group. The within-group similarity is the probability Qin = Qin(q) that

two group members receive the same impulse. In the appendix, we show that Qin is strictly

between 1
2

and 1, while the probability Qout that two players from different groups have the

same impulses is Qout = 1
2
. In words, a player’s impulse is more informative of the impulse of

a member of his own group than of a player outside the group.

A player’s first instinct is to follow his initial impulse, without any strategic considerations.

This defines the level-0 strategy σ0
j for player j. Through introspection, a player realizes his

opponent likewise follows his impulse. By observing his own impulse, a player can form a

belief about his opponent’s impulse and formulate a best response against the belief that the

opponent follows her impulse. This defines the player’s level-1 strategy σ1
j . In general, at

level k > 1, a player formulates a best response against his opponent’s level-(k − 1) strategy.

This, in turn, defines his level-k strategy σkj . Together, this defines a reasoning process with

infinitely many levels. The levels are merely constructs in a player’s mind. We are interested

in the limit of this process as the level k goes to infinity. If there is a limiting strategy σj for

each player j, then the profile σ = (σj)j is an introspective equilibrium.

In an introspective equilibrium, group identity influences behavior because it affects im-

pulses and beliefs. This is true even if groups are identical in terms of payoffs, as we assume

here.

Every introspective equilibrium is a correlated equilibrium, so that behavior in an intro-

spective equilibrium is always consistent with common knowledge of rationality (Aumann,

1987):

Proposition 2.1. [Rationality of Introspective Equilibrium, Kets and Sandroni,

2015] Every introspective equilibrium is a correlated equilibrium.

So, while introspective equilibrium is based on ideas from psychology and assumes that
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players’ initial reaction is nonstrategic, it does not presume that players are boundedly rational.

Perhaps surprisingly, instinctive reactions can in fact be consistent with equilibrium: the

seemingly naive strategy of following one’s initial impulse is the optimal strategy that results

from the infinite process of high-order reasoning, as the next result shows.

Proposition 2.2. [Introspective Equilibrium Coordination Game, Kets and San-

droni, 2015] There is a unique introspective equilibrium of the coordination game. In this

equilibrium, each player follows his initial impulse.

So, in this case, the reasoning process delivers a simple answer: it is optimal to act on

instinct. Intuitively, the initial appeal of following one’s impulse is reinforced at higher levels,

through introspection: if a player realizes that his opponent follows her impulse, it is optimal

for him to do so as well; this, in turn, makes it optimal for the opponent to follow her impulse.

Proposition 2.2 shows that introspection allows players to coordinate. However, coordina-

tion is imperfect: by Lemma C.1 in the appendix, the coordination rate lies strictly between 1
2

and 1. So, while introspective equilibrium is consistent with common knowledge of rationality,

it predicts non-Nash behavior in this environment. Such non-Nash behavior is in fact observed

experimentally. Mehta, Starmer, and Sugden (1994) show that while subjects are unable to

coordinate on one of the pure-strategy Nash equilibria of a coordination game, they tend to

coordinate at a higher rate than in the mixed equilibrium. Also, subjects are more likely to

coordinate when one of the alternatives is highly focal for a group (Bardsley, Mehta, Starmer,

and Sugden, 2009). In line with this observation, our model predicts that the coordination

rate is high if players’ impulses tend to agree (i.e., Qin close to 1).

These predictions are intuitive, but cannot be obtained using standard methods as they

require a way to model how mental models shape strategic reasoning. In addition to providing

intuitive predictions, the introspective process also selects a unique outcome, even in a setting

with many (correlated) equilibria where standard equilibrium refinements have no bite. The

uniqueness of introspective equilibrium will be critical for deriving unambiguous comparative

static results in Sections 3 and 4.

In the unique introspective equilibrium, expected payoffs are:[
p̂Qin + (1− p̂) ·Qout

]
· v.

The marginal benefit of interacting with the own group is the change in payoffs when the

probability of interacting with the own group increases. Thus, it is defined by

β := (Qin −Qout) · v.

Since Qin > Qout, the marginal benefit of interacting with the own group is strictly positive.

Thus:
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Corollary 2.3. The expected utility of a player strictly increases with the probability p̂ of being

matched with a player from the own group.

This follows because players are more likely to coordinate with members of their own

group, consistent with experimental evidence (see Section 1.1). Thus, a player’s expected

payoff increases with the probability that he interacts with his own group. This means that

players have an incentive to seek out similar players, that is, to be homophilous. We explore

the implications in the next section.

3. Homophily

In ordinary life, there is often no exogenous matching mechanism. People meet after they

have independently chosen a common place or a common activity. Accordingly, we model

an extended game in which there are two projects (e.g., occupations, clubs, neighborhoods),

labeled a and b. Players first choose a project and are then matched uniformly at random

with someone that has chosen the same project. Once matched, players play the coordination

game described in Section 2.

Each player has an intrinsic value for each project. Players in group A have a slight

tendency (on average) to prefer project a. Specifically, for each A-player j, the value wA,aj of

project a is drawn uniformly at random from [0, 1], while the value wA,bj of project b is drawn

uniformly at random from [0, 1 − 2ε], for some small ε > 0. For B-players, an analogous

statement holds with the roles of projects a and b reversed. So, on average, B-players have a

slight tendency to prefer project b. Values are drawn independently (across players, projects,

and groups). Under these assumptions, a fraction 1
2

+ε of A-players intrinsically prefer project

a, and a fraction 1
2

+ε of B-players intrinsically prefers project b; see Appendix C.2 for details.

Thus, project a is the group-preferred project for group A, and project b is the group-preferred

project for group B.11

Players’ payoffs are the sum of the intrinsic value of the chosen project and the (expected)

payoff in the unique introspective equilibrium of the coordination game. By Proposition 2.2,

the expected payoff of an A-player with project a is thus

v ·
[
p̂A ·Qin + (1− p̂A) ·Qout

]
+ wA,aj ,

for any given probability p̂A of interacting with the own group; and likewise for other projects

and groups.

11It is not critical for our results that groups differ in their preferences over projects. What we need is that

groups differ in their instinctive choice of project (on average).
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To choose their project, players follow the same introspective process as before, taking into

account their payoffs in the coordination game in the second stage. At level 0, players follow

their impulse and select the project they intrinsically prefer. At level k > 0, players formulate

a best response to the project choices at level k− 1, given their intrinsic preferences. That is,

a player chooses project a if and only if the expected payoff from project a is at least as high

as from b, given the choices at level k − 1. Let pak be the fraction of A-players among those

with project a at level k, and let pbk be the fraction of B-players among those with project b

at level k. The limiting behavior, as k increases, is well-defined.

Lemma 3.1. [Convergence of Introspective Process] The limit pπ of the fractions pπ0 , p
π
1 , . . .

exists for each project π = a, b. Moreover, the limits are the same for both projects: pa = pb.
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Figure 1: The probability pk that a player chooses the group-preferred project at level k, for

β = 0.4 (solid line), β = 0.8 (dashed line), and β = 1 (dotted line), for ε > 0 small.

Figure 1 illustrates the convergence of the introspective process. Let p := pa = pb be the

limiting probability in the introspective equilibrium. So, p is the probability that a player with

the group-preferred project is matched with a player from the same group. Define the level

of homophily h := p − 1
2

to be the difference between the probability that a player with the

group-preferred project meets a player from the same group in the introspective equilibrium

and the probability that he is matched with a player from the same group uniformly at

random, independent of project choice. If the level of homophily is close to 0, there is almost

full integration. If the level of homophily is close to 1
2
, there is nearly complete segregation.

Since there is only a slight asymmetry in preferences, the initial level of homophily (i.e.,

the level of homophily based on intrinsic preferences) is minimal: h0 := ε. However, as the

next result shows, the equilibrium level of homophily can be high:
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Proposition 3.2. [Homophily: Equilibrium] There is a unique introspective equilibrium of

the extended game. In the unique equilibrium, players follow their impulse in the coordination

game, and players’ project choices give rise to complete segregation (h = 1
2
) if and only if

β ≥ 1− 2ε.

If segregation is not complete (h < 1
2
), then the equilibrium level of homophily is given by:

h =
(1− 2ε)

4β2
·
[
2β − 1 +

√
4β2

1− 2ε
− 4β + 1

]
,

where β = v · (Qin − Qout) is the marginal benefit of interacting with the own group. In any

case, the equilibrium level of homophily exceeds the initial level of homophily (i.e., h > ε).

There can be substantial homophily in the unique introspective equilibrium. In that case,

most players choose the group-preferred project, even if they have a strong intrinsic preference

for the other project. Interactions may thus be homophilous even if players have no direct

preference for interacting with members of their own group. Homophily is not the result of any

payoff-relevant differences between groups: groups are almost identical (i.e., ε small), and if

homophily were based solely on intrinsic preferences, then homophily would be negligible (i.e.,

h0 = ε). Instead, homophily is the result of strategic considerations. Strategic considerations

always produce more homophily than would follow from differences in intrinsic preferences

over projects (i.e., h > ε). Introspection and players’ desire to reduce strategic uncertainty

are thus root causes of homophily. This is consistent with experimental evidence that shows

that subjects are more homophilous if interacting with their own group helps reduce strategic

uncertainty (Currarini and Mengel, 2016).

When choosing a project, players do not act on impulse. Instead, introspection leads them

to reevaluate their initial impulse. At level 1, player realize that there is a slightly higher

chance of interacting with members of their own group if they choose the group-preferred

project. As a result, players may select the group-preferred project even if they have a slight

intrinsic preference for the other project. At level 2, an even higher fraction of agents may

select the group-preferred project because players expect the odds of finding a similar player

this way to be even higher than at level 1. So, the attractiveness of the group-preferred project

is reinforced throughout the entire reasoning process, as illustrated in Figure 1. As a result,

the equilibrium level of homophily strictly exceeds the initial level (i.e., h > h0 = ε).

One implication of Proposition 3.2 is that people who belong to the same group become

similar on other dimensions as well, e.g., by choosing the same hobbies, professions, or clubs

as other members of their group, consistent with empirical evidence (Kossinets and Watts,

2009). This differs from peer effects, i.e., the well-known phenomenon that individuals who
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Figure 2: The equilibrium level of homophily h as a function of the coordination payoff v and

the within-group similarity Qin.

interact frequently influence each other, and thus become more similar (e.g., Benhabib, Bisin,

and Jackson, 2010). Here, being similar is a precondition for interaction, not a result thereof.

The comparative statics for the level of homophily follow directly from Proposition 3.2:

Corollary 3.3. [Homophily: Comparative Statics] The level of homophily h increases

with the within-group similarity Qin and with the coordination payoff v. Cultural factors and

economic incentives are complements: homophily is high when either the within-group simi-

larity or the coordination payoff is high.

Figure 2 shows the level of homophily as a function of the coordination payoff v and

the within-group similarity Qin. Regardless of the within-group similarity Qin, the level of

homophily increases with economic incentives to coordinate. These comparative statics results

deliver clear and testable predictions of the model: there is a positive correlation between

coordination payoffs and homophily, regardless of the exact distribution of impulses.

Our results have an interesting implication. Assume that a group, say B, is replaced

by another group B′, and B′-players are as unpredictable for members of group A as B-

players (and vice versa). Then, the model predicts that the level of homophily should remains

unchanged. This suggests that identity does not matter per se; what matters is relative

predictability.

Corollary 3.3 also demonstrates that groups that have more similar impulses will be more

homophilous. This suggests that a similarities can be reinforcing: if group members are similar

(i.e., Qin high), then they tend to choose the same project; this, in turn, may lead to more

13



shared experiences and mutual influence, leading them to become even more similar.

These intuitive predictions require some form of equilibrium selection to be properly for-

malized. We use the dual process account of Theory of Mind to obtain a unique equilibrium.

Standard analysis delivers a multiplicity of (correlated) equilibria and cannot deliver unam-

biguous comparative statics. This is because the set of (correlated) equilibrium changes when

parameters are varied; see Appendix A. By contrast, the introspective process selects a unique

correlated equilibrium.

Our results do not depend on our specific assumptions, such as the exact assumptions

on preferences or the distribution of impulses. For example, the assumption that there are

group-preferred projects can be relaxed substantially. All we need is that groups differ in

their instinctive reactions when choosing projects. In particular, our results go through if a

(large) majority of both groups (intrinsically) prefer a certain project (or have an instinctive

impulse to choose that project), as long as there is some asymmetry across groups. Our

results also continue to hold if players can “opt out” of the coordination game by choosing an

outside option that gives each player a fixed utility independent of which other players choose

this option. Finally, the same results obtain in natural variants of the model. Appendix

B demonstrates that our results go through if players cannot sort by choosing projects, but

instead choose markers, that is, observable attributes such as tattoos or specific attire, to

signal their identity and increase the chance of meeting with members of their own group.

Again, there can be high levels of homophily in equilibrium.

4. Network formation

In many situations, people can choose the effort spend socializing. So, we extend the basic

model to allow players to choose how much (costly) effort they want to invest in meeting

others. We show that the basic mechanism that drives homophily may be reinforced and can

explain commonly observed properties of social and economic networks.

To analyze this setting, it will be convenient to work with a finite (but large) set of players.12

Each group G = A,B has N players, so that the total number of players is 2N . In the first

stage, players simultaneously choose effort and projects. This determines the probability that

they meet other players. In the second stage, they play the coordination game in Section 2

with the players they met in the first stage.

By investing effort, a player increases the chance that he meets other players. Specifically,

12Defining networks with a continuum of players gives rise to technical problems. Our results in Sections

2 and 3 continue to hold under the present formulation of the model (with a finite player set), though the

notation becomes more tedious.
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if two players j, ` have chosen the same project π = a, b and invest effort ej and e`, respectively,

then the probability that they interact is13

ej · e`
Eπ

,

where Eπ is the total effort of the players with project π.14 Thus, efforts are complements:

players interact only if they both invest. This is in line with the assumption of bilateral consent

in deterministic models of network formation (Jackson and Wolinsky, 1996). By normalizing

by the total effort Eπ, we ensure that the network does not become arbitrarily dense as the

number of players grows large. So, the probability of meeting a member of the own group is

endogenous here, as in Section 3. Matching probabilities are now affected not only by players’

project choice, as in Section 3, but also by their effort levels.

Players play the coordination game with every player they meet. So, investing effort in

the first stage increases their expected payoff in the second stage. However, effort is costly: a

player that invests effort e pays a cost ce2/2.

As before, at level 0 players choose the project that they intrinsically prefer. So, the share

of players that select the group-preferred project at level 0 is 1
2

+ ε. In addition, each player

chooses some default effort e0 > 0, independent of his project or group. At higher levels k,

each player formulates a best response to their partners choices at level k− 1. As before, each

player receives a (single) signal that tells him which action is appropriate in the coordination

game. He then plays the coordination game with each of the players he is matched to.15

The limiting behavior is well-defined and is independent of the level-0 effort choice:

Lemma 4.1. [Convergence of Introspective Process (Networks)] The limiting proba-

bility p and the limiting effort choices exist and do not depend on the effort choice at level 0

(i.e., e0).

As before, we have a unique introspective equilibrium, with potentially high levels of

homophily:

Proposition 4.2. [Equilibrium Characterization Networks] There is a unique intro-

spective equilibrium of the network formation game. In the unique equilibrium, players follow

13See, e.g., Cabrales, Calvó-Armengol, and Zenou (2011) and Galeotti and Merlino (2014) for applications

of this model in economics.
14To be precise, to get a well-defined probability, if Eπ = 0, we take the probability to be 0; and if ej ·e` > Eπ,

we take the probability to be 1.
15We allow players to take different actions in each of the (two-player) coordination games he is involved in.

Nevertheless, in any introspective equilibrium, a player chooses the same action in all his interactions, as it is

optimal for him to follow his impulse (Proposition 2.2).
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Figure 3: The level of homophily h as a function of the coordination payoff v and the within-

group similarity Qin (c = 1).

their impulse in the coordination game, and they choose positive effort in the network for-

mation stage. Players with the group-preferred project exert strictly more effort than players

with the other project. In all cases, the fraction of players choosing the group-preferred project

exceeds the initial level (i.e., h > ε).

As before, players segregate for strategic reasons and the level of homophily is greater than

what would be expected on the basis of intrinsic preferences alone (i.e., h > ε). Importantly,

players with the group-preferred project invest more effort in equilibrium than players with the

other project. This is intuitive: a player with the group-preferred project has a high chance

of meeting people from her own group, and thus a high chance of coordinating successfully.

In turn, this reinforces the incentives to segregate.

Figure 3 illustrates the comparative statics of the unique equilibrium. As before, the level

of homophily increases with the within-group similarity and with economic incentives, and the

two are complements.

While the proof of Proposition 4.2 provides a full characterization of the equilibrium,

the comparative statics cannot be analyzed analytically, as the effort levels and the level of

homophily depend on each other in intricate ways. We therefore focus on deriving analytical

results for the case where the network becomes arbitrarily large (i.e., |N | → ∞). As a first

step, we give an explicit characterization of the unique introspective equilibrium:
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Proposition 4.3. Consider the limit where the number of players grows large (i.e., |N | → ∞).

The effort chosen by the players with the group-preferred project in the unique introspective

equilibrium converges to

e∗ =
v

4c
·

(
1 + 2Qin −

1

2h
+

√
4Q2

in − 1 +
1

4h2

)
,

while the effort chosen by the players with the other project converges to

e− =
v

c
· (Qin + 1

2
)− e∗,

which is positive but below the effort e∗ (i.e., e− ∈ (0, e∗)).

Proposition 4.3 shows that in the unique introspective equilibrium, the effort levels depend

on the level of homophily. The level of homophily, in turn, is a function of the equilibrium

effort levels. For example, by increasing her effort, an A-player with the group-preferred

project a increases the probability that players from both groups interact with her and thus

with members from group A. This makes project a more attractive for members from group A,

strengthening the incentives for players from group A to choose project a. This leads to more

homophily. Conversely, if more players choose the group-preferred project, this strengthens

the incentives of players with the group-preferred project to invest effort, as it increases their

chances of meeting a player from their own group. This, in turn, further increases the chances

for players with the group-preferred project of interacting with their own group, reinforcing

the incentives to segregate. On the other hand, if effort is low, then the incentives to segregate

are attenuated, as the probability of meeting similar others is small. This, in turn, reduces

the incentives to invest effort.

As a result of this feedback loop, there are two regimes. If the cost c of effort is small

relative to the benefits of coordination (as captured by v and Qin), then players are willing

to exert high effort, which in turn leads more players to choose the group-preferred project,

further enhancing the incentives to invest effort. In that case, groups are segregated, and

players are densely connected. Importantly, players with the group-preferred project face

much stronger incentives to invest effort than players with the other project, as players with

the group-preferred project have a high chance of interacting with heir own group.

On the other hand, if the effort cost c is high relative to the benefits of coordination, then

the net benefit of interacting with others is small even if the society were fully segregated.

In that case, choices are guided primarily by intrinsic preferences over projects, and the level

of homophily is low. As a result, players face roughly the same incentives to invest effort,

regardless of their project choice, and all players have approximately the same number of

connections.
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Hence, high levels of homophily go hand in hand with inequality in the number of connec-

tions that players have. The following result makes this precise:

Proposition 4.4. Consider the limit where the number of players grows large (i.e., |N | → ∞).

In the unique introspective equilibrium, the distribution of connections of players with the

group-preferred project first-order stochastically dominates the distribution of the number of

connections of players with the other project. The difference in the expected number of con-

nections of the players with the group-preferred project and the other project strictly increases

with the level of homophily.

This result follows directly from Proposition 4.2 and Theorem 3.13 of Bollobás, Janson,

and Riordan (2007).16

There is substantial empirical evidence that, as our model predicts, more homogeneous

groups have a higher level of social interactions (Alesina and La Ferrara, 2000) and that there

is large variation in the number of connections that players have (Jackson, 2008). Further-

more, friendships are often biased towards own-group friendships, and larger groups form more

friendships per capita (Currarini, Jackson, and Pin, 2009).

Our results put restrictions on the type of networks that can be observed. If the relative

benefit v/c is limited and impulses are only weakly correlated within groups (i.e., Qin close

to 1
2
), networks are disconnected. Moreover, they feature low levels of homophily and limited

variation in the number of connections. On the other hand, if the relative benefit v/c is

high and impulses are strongly correlated within a group (i.e., Qin close to 1), networks are

dense. Moreover, they are characterized by high levels of homophily and a skewed distribution

of the number of connections. Networks consist of a tightly connected core of players from

one group, with a smaller periphery of players from the other group. This type of network is

prevalent: many social and economic networks are dense, have a core-periphery structure with

large variation in the number of connections, and feature high levels of homophily (Jackson,

2008).

5. Conclusions

Persistently high levels of homophily have long intrigued researchers. Rather than directly

positing homophilous preferences, we derive them from a desire to reduce strategic uncer-

tainty. Homophily emerges because players find it easier to predict the instinctive reactions of

16In fact, more can be said: the number of connections of a player with the group-preferred project converges

to a Poisson random variable with parameter e∗, and the number of connections of players with the other

project converges to a Poisson random variable with parameter e− < e∗.
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members of their own group. By providing microfoundations for homophilous preferences, we

are able to derive novel testable hypotheses of how homophily varies with economic incentives.

Our theory also puts restrictions on the types of networks that can be observed.

Our framework offers a versatile tool to study homophily in a broad range of environments.

While we have restricted attention to a simple class of games to elucidate the main driving

forces, the model can easily be adapted to encompass a richer class of games, so as to consider

economically critical processes on networks such as information sharing.

We show that there may be homophily even if players have no direct preference for inter-

acting with their own group. However, this does not, in itself, deliver an economic rationale for

policies that reduce homophily. In our model, homophily is a by-product of socially valuable

efforts to reduce strategic uncertainty, and homophily per se does not entail a welfare loss. A

proper understanding of the root causes of homophily is thus also critical for welfare analysis.

We leave this for future work.

Appendix A Equilibrium analysis

We compare the outcomes predicted using the introspective process to equilibrium predic-

tions. As we show, the introspective process selects a correlated equilibrium of the game that

has the highest level of homophily among the set of equilibria in which players’ action depends

on their signal, and thus maximizes the payoffs within this set.

We study the correlated equilibria of the extended game: in the first stage, players choose

a project and are matched with players with the same project; and in the second stage, players

play the coordination game with their partner. It is not hard to see that every introspective

equilibrium is a correlated equilibrium. The game has more equilibria, though, even if we fix

the signal structure. For example, in the coordination stage, the strategy profile under which

all players choose the same fixed action regardless of their signal is a correlated equilibrium,

as is the strategy profile under which half of the players in each group choose s1 and the other

half of the players choose s2, or where players go against the action prescribed by their signal

(i.e., choose s2 if and only the signal is s1). Given this, there is a plethora of equilibria for the

extended game.

We restrict attention to equilibria in anonymous strategies, so that each player’s equilib-

rium strategy depends only on his group, the project of the opponent he is matched with,

and the signal he receives in the coordination game. In the coordination stage, we focus on

equilibria in which players follow their signal. If all players follow their signal, following one’s

signal is a best response: for any probability p of interacting with a player of the own group,

and any value wj of a player’s project, choosing action si having received signal i is a best
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response if and only if[
pQ+ (1− p) · 1

2

]
· v + wj ≥

[
p · (1−Qin) + (1− p) · 1

2

]
· v + wj.

This inequality is always satisfied, as Qin >
1
2
.

So, it remains to consider the matching stage. Suppose that mA,a and mB,b are the shares

of A-players and B-players that choose projects a and b, respectively. Then, the probability

that a player with project a belongs to group A is

pA,a =
mA,a

mA,a + 1−mB,b
;

similarly, the probability that a player with project b belongs to group B equals

pB,b =
mB,b

mB,b + 1−mA,a
.

An A-player with intrinsic values wA,aj and wA,bj for the projects chooses project a if and only

if [
pA,aQin + (1− pA,a) · 1

2

]
· v + wA,aj ≥

[
(1− pB,b) ·Qin + pB,b 1

2

]
· v + wA,bj ;

or, equivalently,

wA,aj − wA,bj ≥ −(pA,a + pB,b − 1) · β,

where we have defined β := v · (Qin − 1
2
). Similarly, a B-player with intrinsic values wB,bj and

wB,aj chooses b if and only if

wB,bj − w
B,a
j ≥ −(pA,a + pB,b − 1) · β

In equilibrium, we must have that

P
(
wA,aj − wA,bj ≥ −(pA,a + pB,b − 1) · β

)
=mA,a; and

P
(
wB,bj − w

B,a
j ≥ −(pA,a + pB,b − 1) · β

)
=mB,b.

Because the random variables wA,aj − wA,bj and wB,bj − wB,aj have the same distribution (cf.

Appendix C.2), it follows that mA,a = mB,b and pA,a = pB,b in equilibrium. Defining p := pA,a

(and recalling the notation ∆j := wA,aj − wA,bj from Appendix C.2), the equilibrium condition

reduces to

P(∆j ≥ −(2p− 1) · β) = p. (A.1)

Thus, equilibrium strategies are characterized by a fixed point p of Equation (A.1).

It is easy to see that the introspective equilibrium characterized in Proposition 3.2 is an

equilibrium. However, the game has more equilibria. The point p = 0 is a fixed point of (A.1)
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if and only if β ≥ 1. In an equilibrium with p = 0, all A-players adopt project b, even if

they have a strong intrinsic preference for project a, and analogously for B-players. In this

case, the incentives for interacting with the own group, measured by β, are so large that they

dominate any intrinsic preference.

But even if β falls below 1, we can have equilibria in which a minority of the players chooses

the group-preferred project, provided that intrinsic preferences are not too strong. Specifically,

it can be verified that there are equilibria with p < 1
2

if and only if ε ≤ 1
2
− 2β(1 − β). This

condition is satisfied whenever ε is sufficiently small.

So, in general, there are multiple equilibria, and some equilibria in which players condition

their action on their signal are inefficient as only a minority gets to choose the project they

(intrinsically) prefer. Choosing a project is a coordination game, and it is possible to get

stuck in an inefficient equilibrium. The introspective process described in Section 3 selects the

payoff-maximizing equilibrium, with the largest possible share of players coordinating on the

group-preferred project.

Importantly, the multiplicity of equilibria in the standard setting makes it difficult to

derive unambiguous comparative statics. This is because as parameters are adjusted, the

set of equilibria changes. Consider, for example, the effect of increasing the within-group

similarity. As any introspective equilibrium is a correlated equilibrium, there is a correlated

equilibrium where greater within-group similarity leads to more homophily (Corollary 3.3).

But, varying the within-group similarity also changes the set of correlated equilibria. It is

not hard to construct examples where increasing the within-group similarity gives rise to new

(anonymous) correlated equilibria with lower levels of homophily.

Appendix B Signaling identity

Thus far, we have assumed that players can sort by choosing projects to sort. An alternative

way in which individuals can bias the meeting process is by signaling their identity to others.

Here, we assume that players can use markers, that is, observable attributes such as tattoos,

to signal their identity.

There are two markers, a and b. Players first choose a marker, and are then matched to

play the coordination game as described below. As before, each A-player has values wA,aj and

wA,bj for markers a and b, drawn uniformly at random from [0, 1] and [0, 1− 2ε], respectively;

and mutatis mutandis for a B-player. Thus, a is the group-preferred marker for group A, and

b is the group-preferred marker for group B.

Players can now choose whether they want to interact with a player with an a- or a

b-marker. Each player is chosen to be a proposer or a responder with equal probability,
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independently across players. Proposers can propose to play the coordination game to a

responder. He chooses whether to propose to a player with an a- or a b-marker. If he chooses

to propose with a player with an a-marker, he is matched uniformly at random with a responder

with marker, and likewise if he chooses to propose to a player with a b-marker. A responder

decides whether to accept or reject a proposal from a proposer, conditional on his own marker

and the marker of the proposer.17 Each player is matched exactly once.18 Players’ decision

to propose or to accept/reject a proposal may depend on marker choice, but does not depend

on players’ identities or group membership, which is unobservable. If player j proposed to

player j′, and j′ accepted j’s proposal, then they play the coordination game in Section 2; if

j’s proposal was rejected by j′, both get a payoff of zero.

Players again use introspection to decide on their action. At level 0, players choose the

marker that they intrinsically prefer. Moreover, players propose to/accept proposals from

anyone. At level 1, an A-player therefore has no incentive to choose a marker other than

his intrinsically preferred marker, and thus chooses that marker. However, since at level 0,

a slight majority of players with marker a belongs to group A, proposers from group A have

an incentive to propose only to players with marker a, unless they have a strong intrinsic

preference for marker b. Because players are matched only once, and because payoffs in the

coordination game are nonnegative, a responder always accepts any proposal. The same holds,

mutatis mutandis, for B-players.

We can prove an analogue of Proposition 3.2 for this setting:

Proposition B.1. [Equilibrium Characterization Marker Choice] There is a unique

introspective equilibrium of the extended game. In the unique equilibrium, players follow their

impulse in the coordination game, and players’ marker choices give rise to complete segregation

(h = 1
2
) if and only if

β ≥ 1
2
− ε;

If segregation is not complete (h < 1
2
), then the level of homophily is given by:

1
2
− 1

2− 4ε

(
1− 2ε− 1

2
· β
)2
.

17So, a proposer only proposes to play, and a responder can only accept or reject a proposal. In particular,

he cannot propose transfers. The random matching procedure assumed in Section 2 can be viewed as the

reduced form of this process.
18Such a matching is particularly straightforward to construct when there are finitely many players. Oth-

erwise, we can use the matching process of Alós-Ferrer (1999). The results continue to hold when players are

matched a fixed finite number of times, or when there is discounting and players are sufficiently impatient.

Without such restrictions, players have no incentives to accept a proposal from a player with the non-group

preferred marker, leaving a significant fraction of the players unmatched.
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In all cases, the fraction of players choosing the group-preferred marker exceeds the initial level

(i.e., h > ε).

The proof is in the appendix. The equilibrium takes a similar form as when players can

sort by choosing projects. The equilibrium level of homophily is always higher than the level

of homophily based on preferences over markers. If the marginal benefit of interacting with

the own group is sufficiently high, then there is full segregation.

Also the comparative statics are similar:

Corollary B.2. The level of homophily h increases with the within-group similarity Qin and

with the coordination payoff v. Within-group similarity and economic incentives are com-

plements: the level of homophily is high whenever the coordination payoff is high and the

within-group similarity is close to 1.

So, even if players cannot influence the probability of meeting similar others by locating

in a particular neighborhood or joining a club, they can nevertheless associate preferentially

with other members of their own group, provided that they can signal their identity. These

results help explain why groups are often marked by seemingly arbitrary traits (Barth, 1969).

Unlike in classical models of costly signaling, adopting a certain marker is not inherently more

costly for one group than for another. The difference in signaling value of the markers across

groups is endogenous in our model.

Appendix C Auxiliary results

C.1 Impulses

We characterize the probability that two players have the same impulse. Recall that,

conditional on θA = 1, an A-player has an impulse to play action s1 with probability q ∈ (1
2
, 1).

Likewise, conditional on θA = 2, an A-player has an impulse to play action s2 with probability

q. Analogous statements apply to B-players. The states θA and θB are independent. The

following result from Kets and Sandroni (2015) characterizes the probability that two players

have the same impulse.

Lemma C.1. [Kets and Sandroni (2015)] Let q ∈ (1
2
, 1) be the probability that a player

of group A has the impulse to choose s1 conditional on θA = 1, and analogously for group B.

Then:

(a) the probability that two distinct A-players have the same impulse is Qin := q2+(1−q)2 ∈
(1
2
, 1);

23



(b) the probability that two distinct A-players have the impulse to play s1 is equal to 1
2
Qin;

(c) the conditional probability that an A-player j has the impulse to play action s1 given that

another A-player j′ has the impulse to play action s1 is equal to Qin;

(d) the probability that an A-player and a B-player have the same impulse is Qout = 1
2
.

(e) the probability that an A-player and a B-player have the impulse to play s1 is equal to
1
2
Qout;

(f) the conditional probability that an A-player j has the impulse to play action s1 given that

a B-player j′ has the impulse to play s1 is equal to Qout;

C.2 Intrinsic preferences

We denote the values of an A-player j for projects a and b are denoted by wA,aj and

wA,bj , respectively; likewise, the values of a B-player for projects b and a are wB,bj and wB,aj ,

respectively. As noted in the main text, the values wA,aj and wA,bj are drawn from the uniform

distribution on [0, 1] and [0, 1 − 2ε], respectively. Likewise, wB,bj and wB,aj are uniformly

distributed on [0, 1] and [0, 1−2ε]. All values are drawn independently (across players, projects,

and groups). So, players in group A (on average) intrinsically prefer project a (in the sense of

first-order stochastic dominance) over project b; see Figure 4. Likewise, on average, players in

group B have an intrinsic preference for b.

Given that the values are uniformly and independently distributed, the distribution of the

difference wA,aj −w
B,a
j in values for an A-player is given by the so-called trapezoidal distribution.

That is, if we define x := 1−2ε, we can define the tail distribution Hε(y) := P(wA,aj −w
A,b
j ≥ y)

by

Hε(y) =



1 if y < −(1− 2ε);

1− 1
2−4ε · (1− 2ε+ y)2 if y ∈ [−(1− 2ε), 0);

1− 1
2
· (1− 2ε)− y if y ∈ [0, 2ε);

1

4(
1
2
−ε)
· (1− y)2 if y ∈ [2ε, 1];

0 otherwise.

By symmetry, the probability P(wB,bj −w
B,a
j ≥ y) that the difference in values for the B-player

is at least y is also given by Hε(y). So, we can identify wA,aj − wA,bj and wB,bj − w
B,a
j with the

same random variable, denoted ∆j, with tail distribution Hε(·); see Figure 5.

The probability that A-players prefer the a-project, or, equivalently, the share of A-players

that intrinsically prefer a (i.e., wA,aj − wA,bj > 0), is 1 − 1
2
x = 1

2
+ ε, and similarly for the

B-players and project b.
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Figure 4: The cumulative distribution functions of wA,aj (solid line) and wA,bj (dashed line) for

x = 0.75.

Appendix D Proofs

D.1 Proof of Proposition 2.2

The proof follows from Lemma 3.2 of Kets and Sandroni (2015). We give a separate proof

here to give insight in the driving forces. By assumption, a player chooses action si at level

0 if and only if his initial impulse is i = 1, 2. For k > 0, assume, inductively, that at level

k − 1, a player chooses si if and only if his initial impulse is i. Consider level k, and suppose

a player’s impulse is i. Choosing si is the unique best response for him if the expected payoff

from choosing si is strictly greater than the expected payoff from choosing the other action

sj 6= si. That is, if we write j 6= i for the alternate impulse, si is the unique best response for

the player if

p · v · P(i | i) + (1− p) · v · P(i) > p · v · P(j | i) + (1− p) · v · P(j) · v,

where P(m | i) is the conditional probability that the impulse of a player from the same group

is m = 1, 2 given that the player’s own impulse is i, and P(m) is the probability that a player

from the other group has received signal m. Using that P(m) = 1
2
, P(i | i) = q2 + (1− q)2 and

P(j | i) = 1− q2 − (1− q)2, and rearranging, we find that this holds if and only if

p(q2 + (1− q)2) > p(1− q2 − (1− q)2),

and this holds for every p > 0, since q2 + (1 − q)2 > 1
2
. This shows that at each level, it is

optimal for a player to follow his impulse. So, in the unique introspective equilibrium, every
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Figure 5: The probability that wA,aj − wA,bj is at least y, as a function of y, for ε = 0 (solid

line); ε = 0.125 (dotted line); and ε = 0.375 (dashed line).

player follows his impulse. �

D.2 Proof of Lemma 3.1

At level 0, players choose the project that they intrinsically prefer. So, the share of players

that choose project a that belong to group A is

pa0 =
1
2
+ε

1
2
+ε+(1−( 1

2
+ε))

= 1
2

+ ε.

Likewise, the share of players that choose project b that belong to group B is pb0 = 1
2

+ε. Also,

recall that x := 1− 2ε (Appendix C.2).

Recall that marginal benefit of interacting with the own group is

β := v · (Qin −Qout).

As Qin > Qout, the marginal benefit of interacting with the own group is positive. We show

that the sequence {pπk}k is (weakly) increasing and bounded for every project π.

At higher levels, players choose projects based on their intrinsic values for the project as

well as the coordination payoff they expect to receive at each project. Suppose that a share

pak−1 of players with project a belong to group A, and likewise for project b and group B.

Then, the probability that an A-player with project a is matched with a player of the own

group is pak−1, and the probability that a B-player with project a is matched with a player of

the own group is 1− pk−1. Applying Proposition 2.2 (with p̂ = pk−1 and p̂ = 1− pk−1) shows

that both A-players and B-players with project a follow their signal in the coordination game,

and similarly for the A- and B-players with project b.
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So, for every k > 0, given pak−1, a player from group A chooses project a if and only if[
pak−1 ·Qin + (1− pak−1) ·Qout

]
· v + wA,aj ≥

[
(1− pak−1) ·Qin + pak−1 ·Qout

]
· v + wA,bj .

This inequality can be rewritten as

wA,aj − wA,bj ≥ −(2pak−1 − 1) · β, (D.1)

and the share of A-players for whom this holds is

pak := Hε

(
−(2pk−1 − 1) · β

)
,

where we have used the expression for the tail distribution Hε from Appendix C.2. The same

law of motion holds, of course, if a is replaced with b and A is replaced with B.

Fix a project π. Notice that −(2pπ0−1) ·β < 0. We claim that pπ1 ≥ pπ0 and that pπ1 ∈ (1
2
, 1].

By the argument above,

pπ1 = P(wA,aj − wA,bj ≥ −(2pπ0 − 1) · β)

= Hε(−(2pπ0 − 1) · β)

=

{
1− 1

2−4ε · (1− 2ε− (2pπ0 − 1) · β)2 if (2pπ0 − 1) · β ≤ 1− 2ε;

1 if (2pπ0 − 1) · β > 1− 2ε;

where we have used the expression for the tail distribution Hε(y) from Appendix C.2. If

(2pπ0 − 1) ·β > 1− 2ε, the result is immediate, so suppose that (2pπ0 − 1) ·β ≤ 1− 2ε. We need

to show that

1− 1
2−4ε · (1− 2ε− (2pπ0 − 1) · β)2 ≥ pπ0 .

Rearranging and using that pπ0 ∈ (1
2
, 1], we see that this holds if and only if

(2pπ0 − 1) · β ≤ 2 · (1− 2ε).

But this holds because (2pπ0 − 1) ·β ≤ 1− 2ε and 1− 2ε ≥ 0. Note that the inequality is strict

whenever β < 1− 2ε, so that pπ1 > pπ0 in that case.

For k > 1, suppose, inductively, that pπk−1 ≥ pπk−2 and that pπk−1 ∈ (1
2
, 1]. By a similar

argument as above,

pπk =

{
1− 1

2−4ε · (1− 2ε− (2pπk−1 − 1) · β)2 if (2pπk−1 − 1) · β ≤ 1− 2ε;

1 if (2pπk−1 − 1) · β > 1− 2ε.

Again, if (2pπk−1− 1) · β > 1− 2ε, the result is immediate, so suppose (2pπk−1− 1) · β ≤ 1− 2ε.

We need to show that

1− 1
2−4ε · (1− 2ε− (2pπk−1 − 1) · β)2 ≥ pπk−1,
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or, equivalently,

2 · (1− 2ε) · (1− pπk−1) ≥ (1− 2ε− (2pπk−1 − 1) · β)2.

By the induction hypothesis, pπk−1 ≥ pπ0 , so that 1− 2ε ≥ 2− 2pπk−1. Using this, we have that

2 · (1− 2ε) · (1− pπk−1) ≥ 4 · (1− pπk−1)2. Moreover,

(1− 2ε− (2pπk−1 − 1) · β)2 ≤ 4 · (1− pπk−1)2 − 2β(1− 2ε)(2pπk−1 − 1) + (2pπk−1 − 1)2β2.

So, it suffices to show that

4 · (1− pπk−1)2 ≥ 4 · (1− pπk−1)2 − 2β(1− 2ε)(2pπk−1 − 1) + (2pπk−1 − 1)2β2.

The above inequality holds if and only if

(2pπk−1 − 1)β ≤ 2 · (1− 2ε),

and this is true since (2pπk−1 − 1) · β ≤ 1− 2ε.

So, the sequence {pπk}k is weakly increasing and bounded when β > 0. It now follows from

the monotone sequence convergence theorem that the limit pπ exists. The argument clearly

does not depend on the project π, so we have pa = pb. �

D.3 Proof of Proposition 3.2

Recall that the marginal benefit of interacting with the own group is β > 0. The first step

is to characterize the limiting fraction p, and show that p > 1
2

+ ε. By the proof of Lemma

3.1, we have pk ≥ pk−1 for all k. By the monotone sequence convergence theorem, p = supk pk,

and by the inductive argument, p ∈ (1
2

+ ε, 1]. It is easy to see that p = 1 if and only if

Hε(−(2 · 1− 1) · β) = 1, which holds if and only if β ≥ 1− 2ε.

So suppose that β < 1 − 2ε, so that p < 1. Again, p = Hε(−(2p − 1) · β), or, using the

expression from Appendix C.2,

p = 1− 1
2−4ε · (1− 2ε− (2p− 1) · β)2.

It will be convenient to substitute x = 1− 2ε for ε, so that we are looking for the solution of

p = 1− 1
2x
· (x− (2p− 1) · β)2. (D.2)

Equation (D.2) has two roots,

r1 = 1
2

+ 1
4β2

(
(2β − 1) · x+

√
4β2x− (4β − 1) · x2

)
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and

r2 = 1
2

+ 1
4β2

(
(2β − 1) · x−

√
4β2x− (4β − 1) · x2

)
.

We first show that r1 and r2 are real numbers, that is, that 4β2x − (4β − 1) · x2 ≥ 0. Since

x > 0, this is the case if and only if 4β ≥ (4β − 1) · x. This holds if β ≤ 1
4
, so suppose that

β > 1
4
. We need to show that

x ≤ 4β2

4β − 1
.

Since the right-hand side achieves its minimum at β = 1
2
, it suffices to show that x ≤ (4 ·

(1
2
)2)/(4 · 1

2
− 1) = 1. But this holds by definition. It follows that r1 and r2 are real numbers.

We next show that r1 >
1
2
, and r2 <

1
2
. This implies that p = r1, as p = supk pk > p0 >

1
2
.

It suffices to show that 4β2x − (4β − 1) · x2 > (1 − 2β)2x2. This holds if and only if

β > (2 − β) · x. Recalling that β ≤ 1 − 2ε < 1 by assumption, we see that this inequality is

satisfied. We conclude that p = r1 when β > 0. �

D.4 Proof of Corollary 3.3

It is straightforward to verify that the derivative of p with respect to β is positive whenever

p < 1 (and 0 otherwise). It then follows from the chain rule that the derivatives of p with

respect to v and Qin are both positive for any p < 1 (and 0 otherwise). �

D.5 Proof of Lemma 4.1

Recall that at level 0, players invest effort e0 > 0 in socializing. Moreover, they choose

project a if and only if they intrinsically prefer project a over project b. It follows from the

distribution of the intrinsic values (Appendix C.2) that the number NA,a
0 of A-players with

project a at level 0 follows the same distribution as the number NB,b
0 of B-players with project

b at level 0; similarly, the number NA,a
0 of A-players with project b at level 0 has the same

distribution as the number NB,a
0 of B-players with project a at level 0. Let ND

0 and NM
0 be

random variables with the same distribution as NA,a
0 and NB,a

0 , respectively (where D stands

for “dominant group” and M stands for “minority group”; the motivation for this terminology

is that a slight majority of the players with an intrinsic preference for project a belongs to

group A).

Conditional on ND
0 and NM

0 , the expected utility of project a to an A-player at level 1 is19

v ·
[
ej ·ND

0 · e0 ·Qin + ej ·NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
+ wA,aj − cej

2

19If ND
0 = NM

0 = 0, then the expected benefit from networking is 0. In that case, the player’s expected

utility is thus wA,aj − cej
2 . A similar statement applies at higher levels.
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if he invests effort ej and his intrinsic value for project a is wA,aj . Likewise, conditional on ND
0

and NM
0 , the expected utility of project b to an A-player at level 1 is

v ·
[
ej ·NM

0 · e0 ·Qin + ej ·ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
+ wA,bj −

cej
2

if he invests effort ej and his intrinsic value for project b is wA,bj . Taking expectations over

ND
0 and NM

0 , it follows from the first-order conditions that the optimal effort levels for an

A-player at level 1 with projects a and b are given by

eA,a1 =
(v
c

)
· E
[
ND

0 · e0 ·Qin +NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
; and

eA,b1 =
(v
c

)
· E
[
NM

0 · e0 ·Qin +ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

]
;

respectively, independent of the intrinsic values. It can be checked that the optimal effort

levels eB,a1 and eB,b1 for a B-player at level 1 with projects a and b are equal to eA,b1 and eA,a1 ,

respectively. It will be convenient to define eD1 := eA,a1 = eB,b1 and eM1 := eA,b1 = eB,a1 . We claim

that eD1 > eM1 . To see this, note that ND
0 is binomially distributed with parameters |N | and

p0 := 1
2
+ε > 1

2
(the probability that a player has an intrinsic preference for the group-preferred

project) and that NM
0 is binomially distributed with parameters |N | and 1 − p0 < 1

2
. If we

define

gD1 (ND
0 , N

M
0 , e0) :=

(v
c

)
·
(
ND

0 · e0 ·Qin +NM
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

)
; and

gM1 (ND
0 , N

M
0 , e0) :=

(v
c

)
·
(
NM

0 · e0 ·Qin +ND
0 · e0 · 12

ND
0 · e0 +NM

0 · e0

)
;

so that eD1 and eM1 are just the expectations of gD1 and gD1 , respectively, then the result follows

immediately from the fact that ND
0 first-order stochastically dominates NM

0 , as gD1 is (strictly)

increasing in ND
0 and (strictly) decreasing in NM

0 , and gM1 is decreasing in ND
0 and increasing

in NM
0 (again, strictly).

Substituting the optimal effort levels eD1 and eM1 into the expression for the expected utility

for each project shows that the maximal expected utility of an A-player at level 1 of projects

a and b is given by

c

2
(eD1 )2 + wA,aj ; and

c

2
(eM1 )2 + wA,bj ;

respectively. At level 1, an A-player therefore chooses project a if and only if

wA,aj − wA,bj ≥ − c
2

(
(eD1 )2 − (eM1 )2

)
.
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The analogous argument shows that a B-player chooses project b at level 1 if and only if

wB,bj − w
B,a
j ≥ − c

2

(
(eD1 )2 − (eM1 )2

)
.

Since wA,aj − wA,bj and wB,bj − wB,aj both have tail distribution Hε(·) (Appendix C.2), the

probability that an A-player chooses project a (or, that a B-player chooses project b) is

p1 := Hε

(
− c

2

(
(eD1 )2 − (eM1 )2

))
.

Since eD1 > eM1 , we have p1 > p0. Note that both the number NA,a
1 of A-players at level 1

with project a and the number NB,b
1 of B-players at level 1 with project b are binomially

distributed with parameters |N | and p1 >
1
2
; the number NA,a

1 of A-players at level 1 with

project b and the number NB,a
1 of B-players at level 1 with project a are both binomially

distributed with parameters |N | and 1 − p1. Let ND
1 and NM

1 be random variables that are

binomially distributed with parameters (|N |, p1) and (|N |, 1 − p1), respectively, so that the

distribution of ND
1 first-order stochastically dominates the distribution of NM

1 .

Note that while NA,a
1 and NA,a

1 are clearly not independent (as NA,a
1 + NA,a

1 = N), NA,a
1

and NB,a
1 are independent (and similarly if we replace NA,a

1 , NA,a
1 , and NB,a

1 with NB,b
1 , NB,a

1 ,

and NA,a
1 , respectively). When we take expectations over the number of players from different

groups with a given project (e.g., NA,a
1 and NB,a

1 ) to calculate optimal effort levels, we therefore

do not have to worry about correlations between the random variables. A similar comment

applies to levels k > 1.

Finally, it will be useful to note that

eD1 + eM1 =
v

c
(Qin + 1

2
).

Both eD1 and eM1 are positive, as they are proportional to the expectation of a nonnegative

random variable (with a positive probability on positive realizations), and we have

eD1 − eM1 > eD0 − eM0 = 0,

where eD0 = eM0 = e0 are the effort choices at level 0.

For k > 1, assume, inductively, that the following hold:

• we have pk−1 ≥ pk−2;

• the number NA,a
k−1 of A-players with project a at level k − 1 and the number NB,b

k−1 of

B-players with project b at level k − 1 are binomially distributed with parameters |N |
and pk−1;
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• the number NA,a
k−1 of A-players with project b at level k − 1 and the number NB,a

k−1 of

B-players with project a at level k − 1 are binomially distributed with parameters |N |
and 1− pk−1;

• for every level m ≤ k−1, the optimal effort level at level m for all A-players with project

a and for all B-players with project b is equal to eDm;

• for every level m ≤ k−1, the optimal effort level at level m for all A-players with project

b and for all B-players with project a is equal to eMm ;

• we have eDk−1 > eMk−1 > 0 for k ≥ 2;

• we have eDk−1 − eMk−1 ≥ eDk−2 − eMk−2.

We write ND
k−1 and NM

k−1 for random variables that are binomially distributed with param-

eters (|N |, pk−1) and (|N |, 1− pk−1), respectively.

By a similar argument as before, it follows that the optimal effort level for an A-player

that chooses project a or for a B-player that chooses b is

eDk :=
(v
c

)
· E
[
ND
k−1 · eDk−1 ·Qin +NM

k−1 · eMk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

]
,

and that the optimal effort level for an A player that chooses project b or for a B-player that

chooses a is

eMk :=
(v
c

)
· E
[
NM
k−1 · eMk−1 ·Qin +ND

k−1 · eDk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

]
.

Again, it is easy to verify that

eDk + eMk =
v

c
(Qin + 1

2
). (D.3)

We claim that eDk ≥ eDk−1 (so that eMk ≤ eMk−1). It then follows from the induction hypothesis

that eDk > eMk and that eDk − eMk ≥ eDk−1 − eMk−1.
To show this, recall that for m = 1, . . . , k − 1, we have that eDm > eMm and eDm + eMm =

v
c
(Qin + 1

2
). Define

gDk−1(N
D
k−2, N

M
k−2, e

D
k−2) :=

(v
c

)
·
(
ND
k−2 · eDk−2 ·Qin +NM

k−2 · eMk−2 · 12
ND
k−2 · eDk−2 +NM

k−2 · eMk−2

)
gDk (ND

k−1, N
M
k−1, e

D
k−1) :=

(v
c

)
·
(
ND
k−1 · eDk−1 ·Qin +NM

k−1 · eMk−1 · 12
ND
k−1 · eDk−1 +NM

k−1 · eMk−1

)
so that eDk−1 and eDk are just proportional to the expectation of gDk−1 and gDk (over ND

k−1 and

NM
k−1), respectively, analogous to before. It is easy to verify that gDk (ND

k−1, N
M
k−1, e

D
k−1) ≥
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gDk (ND
k−1, N

M
k−1, e

M
k−1). Consequently,

eDk ≥
(v
c

)
· E
[
ND
k−1 · eMk−1 ·Qin +NM

k−1 · eMk−1 · 12
ND
k−1 · eMk−1 +NM

k−1 · eMk−1

]
=

(v
c

)
· E
[
ND
k−1 ·Qin +NM

k−1 · 12
ND
k−1 +NM

k−1

]
.

Using that gDk is decreasing in its second argument, and that the distribution of NM
k−2 first-order

stochastically dominates the distribution of NM
k−1, we have

eDk ≥
(v
c

)
· E
[
ND
k−1 ·Qin +NM

k−2 · 12
ND
k−1 +NM

k−2

]
. (D.4)

From the other direction, use that gDk−1(N
D
k−2, N

M
k−2, e

M
k−2) ≤ gDk−1(N

D
k−2, N

M
k−2, e

D
k−1) to obtain

eDk−1 ≤
(v
c

)
· E
[
ND
k−2 · eDk−2 ·Qin +NM

k−2 · eDk−2 · 12
ND
k−2 · eDk−2 +NM

k−2 · eDk−2

]
.

Using that gDk−1 is increasing in its first argument, and that the distribution of ND
k−1 first-order

stochastically dominates the distribution of ND
k−2, we obtain

eDk−1 ≤
(v
c

)
· E
[
ND
k−1 ·Qin +NM

k−1 · 12
ND
k−1 +NM

k−1

]
. (D.5)

The result now follows by comparing Equations (D.4) and (D.5). Also, using that gDk is

increasing and decreasing in its first and second argument, respectively, we have that

eDk ≥
(v
c

)
· E
[
N · eMk−1 · 12
N · eMk−1

]
=

v

2c

eDk ≤
(v
c

)
· E
[
N · eDk−1 ·Qin

N · eDk−1

]
=
v ·Qin

c
,

and it follows from (D.3) that eDk , e
M
k ∈ [ v

2c
, v·Qin

c
].

By a similar argument as before, the probability at level k that an A-player chooses project

a (or, that a B-player chooses project b) is

pk := Hε

(
− c

2

(
(eDk )2 − (eMk )2

))
.

Hence, the number NA,a
k of A-players with project a (or, the number NB,b of B-players with

project b) at level k is a binomially distributed random variable ND
k with parameters |N | and

pk. Similarly, the number NA,a
k of A-players with project b (or, the number NB,a of B-players
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with project a) at level k is a binomially distributed random variable with parameters |N | and

1− pk.
Using that eDk − eMk ≥ eDk−1 − eMk−1 > 0, and Equation (D.3) again, it follows that (eDk )2 −

(eMk )2 ≥ (eDk−1)
2 − (eMk−1)

2 > 0, it follows that pk ≥ pk−1, and the induction is complete.

We thus have that the sequences p0, p1, p2 and eD1 , e
D
2 , . . . are monotone and bounded,

so that by the monotone convergence theorem, their respective limits p := limk→∞ pk and

eD := limk→∞ e
D
k exist (as does eM := limk→∞ e

M
k = v

c
(Qin + 1

2
)− eD). �

D.6 Proof of Proposition 4.2

Recall the definitions from the proof of Lemma 4.1. It is straightforward to check that the

random variables ND
k and NM

k converge in distribution to a binomially distributed random

variable ND with parameters |N | and p and a binomially distributed random variable NM

with parameters |N | and 1 − p. It then follows from continuity and the Helly-Bray theorem

that eD satisfies

eD =
(v
c

)
· E
[
ND · eD ·Qin +NM · eM · 1

2

ND · eD +NM
k−2 · eM

]
.

where the expectation is taken over ND and NM , so that eD is a function of p. Also, by

continuity, the limit p satisfies

p = Hε

(
− c

2

(
(eD)2 − (eM)2

))
.

By the proof of Lemma 4.1, we have 0 < eM < eD < v
c
(Qin + 1

2
). Moreover, eD + eM =

v
c
(Qin + 1

2
).

It remains to show that the equilibrium is unique (after all, the equations above could have

multiple solutions). Define

hD(eD) :=
(v
c

)
· E
[
ND · eD ·Qin +NM · eM · 1

2

ND · eD +NM · eM

]
,

so that eD = hD(eD) in the introspective equilibrium.20 Since eD + eM = v
c
(Qin + 1

2
) and

eM > 0, we have eD ∈ (0, v
c
(Qin + 1

2
)). It is easy to check that limeD↓0 h

D(eD) = v
2c
> 0 and

that lim
eD↑v

c
(Qin+

1
2
)
hD(eD) = vQ

c
< v

c
(Qin+ 1

2
). So, to show that there is a unique introspective

equilibrium, it suffices to show that hD(eD) is increasing and concave.

To show that hD(eD) is increasing, define

gD(ND, NM , eD) :=
ND · eD ·Qin +NM · eM · 1

2

ND · eD +NM
k−2 · eM

,

20As before, the expectation is taken over ND, NM such that ND > 0 or NM > 0.
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so that hD(eD) is proportional to the expectation of gD over ND and NM , as before. It is

easy to verify that gD(ND, NM , eD) is increasing in eD for all ND and NM , and it follows that

hD(eD) is increasing in eD.

To show that hD(eD) is concave, consider the second derivative of hD(eD):21

d2hD(eD)

deD
=

2v2

c2
·
(
Q2
in −

1

4

) N∑
nD=1

(
N

nD

)
pnD(1− p)N−nD

N∑
nM=1

(
N

nM

)
pN−nM (1− p)nM · nDnM(nM − nD)

(nD · eD + nM · eM)3
.

We can split up the sum and consider the cases nM > nD and nD ≥ nM separately. To prove

that hD(eD) is concave, it thus suffices to show that

N∑
nD=1

(
N

nD

)
pnD(1− p)N−nD

N∑
nM=nD+1

(
N

nM

)
pN−nM (1− p)nM · nDnM(nM − nD)

(nD · eD + nM · eM)3
−

N∑
nM=1

(
N

nM

)
pN−nM (1− p)nM

N∑
nD=nM

(
N

nD

)
pnD(1− p)N−nD · nDnM(nD − nM)

(nD · eD + nM · eM)3
≤ 0.

We can rewrite this condition as

N∑
nD=1

N∑
nM=nD+1

(
N

nD

)(
N

nM

)
· nDnM(nM − nD)

(nD · eD + nM · eM)3
·
[
pnD(1− p)N−nD

pN−nM (1− p)nM−

(1− p)nDpN−n
D

(1− p)N−nMpn
M
]
≤ 0.

But this is equivalent to the inequality

N∑
nD=1

N∑
nM=nD+1

(
N

nD

)(
N

nM

)
nDnM(nM − nD)

(nD · eD + nM · eM)3
·
[
1−

( p

1− p

)2nM−2nD
]
≤ 0,

and this clearly holds, since p > p0 >
1
2

and nM > nD for all terms in the sum.

It remains to make the connection between the effort level eD of the dominant group and

the effort level e∗ of the players with the group-preferred project. By definition, the two are

equal (see the proof of Lemma 4.1). For example, A-players with project a are the dominant

group at project a, but they are also the players with the group-preferred project among the

players from group A. Similarly, the effort level eM of the minority group and the effort level

e− of the players with the non-group preferred project are equal. For example, A-players with

project b form the minority group at project b, and are the A-players that have chosen the

non-group preferred project among A-players. �
21As before, we can ignore the case nD = nM = 0; and if nD = 0 and nM > 0, then the contribution to the

sum is 0, and likewise for nD > 0, nM = 0.
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D.7 Proof of Proposition 4.3

Recall the notation introduced in the proof of Lemma 4.1. By the results of Bollobás et al.

(2007, p. 8, p. 10), the total number ND + NM of players with a given project converges

in probability to |N |, and the (random) fraction ND

|N | converges in probability to p. It is then

straightforward to show that the fraction ND

ND+NM converges in probability to p. Hence, the

function hD(eD) (defined in the proof of Proposition 4.2) converges (pointwise) to

hD(eD) =
(v
c

)
·
[
p · eD ·Qin + (1− p) · eM · 1

2

p · eD + (1− p) · eM

]
.

The effort in an introspective equilibrium thus satisfies the fixed-point condition eD = hD(eD).

This gives a quadratic expression (in eD), which has two (real) solutions. One root is negative,

so that this cannot be an introspective equilibrium by the proof of Proposition 4.2. The other

root is as given in the proposition (where we have substituted eD for e∗, eM for e− (see the

proof of Proposition 4.2), and where we have used that h = p− 1
2
). �

D.8 Proof of Proposition B.1

First note that at level 1, the fraction p1 of players with marker a that belong to group A

is p1 := Hε(0) > 1
2
.

For k > 1, suppose that at level k − 1, the fraction of players with marker a to group A is

pk−1 >
1
2
. Moreover, suppose that each player j accepts proposals from anyone, and proposes

only to players with the marker that is the group-preferred marker for player j’s group. Then,

at level k, an A-player chooses marker a if and only if

1
2
·
([
pk−1 ·Qin +Qout · (1− pk−1)

]
· v + wA,aj

)
+ 1

2
·
(
Qin · v + wA,aj

)
≥

1
2
·
([
pk−1 ·Qin +Qout · (1− pk−1)

]
· v + wA,bj

)
+ 1

2
·
(
Qout · v + wA,bj

)
.

The first term on the left- and right-hand side are the expected payoff if the player is the

proposer (which happens with probability 1
2
). If an A-player is the proposer, he proposes to

players with the group-preferred marker a, and interacts with a player from A with probability

pk−1, regardless of what marker he chose. If he is the responder, he gets proposals only from

players for whom his marker is their group-preferred one (i.e., from A-players if he chose

marker a; and from B-players if he chose marker b). So, at level k, the fraction pk of players

with marker a that belong to A is pk = Hε(−1
2
· β), independent of k. It follows that the

limiting fraction p of players with marker a that belong to A is

p = Hε(−1
2
· β).

The result now follows from the definition of the tail distribution Hε(·) (Appendix C.2). �
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