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Abstract

Bounded reasoning about rationality can have important implications for behavior. These

bounds are typically viewed as an artifact of limits in the ability to engage in interactive rea-

soning, i.e., to reason through “I think, you think, I think, etc ...” However, in principle, these

bounds need not be determined by limits in ability. This paper develops a novel identification

strategy to show that bounded reasoning about rationality is not determined by limitations in

ability. It goes on to show that non-degenerate beliefs about rationality can be an important

determinant of behavior. This has important implications for out-of-sample predictions.

1 Introduction

The standard approach to game theory implicitly takes as given that players are strategically

sophisticated. In particular, it is often assumed that players are rational and there is common

reasoning about rationality: players choose an action that is a best response given their belief about

the play of the game, they believe others do the same, etc. However, experimental game theory

has suggested that players’ behavior may instead reflect bounded reasoning about rationality. (See

e.g., Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes, Crawford, and Broseta, 2001; Camerer,

Ho, and Chong, 2004; Arad and Rubinstein, 2012; Crawford, Costa-Gomes, and Iriberri, 2013;

Kneeland, 2015, amongst many others.) For example, a player may be rational and believe that
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her opponent is rational (i.e., she may play a best response and believe that her opponent plays a

best response), but she may not believe that her opponent believes that she is rational.

Common reasoning about rationality requires that players have an unlimited ability to engage

in interactive reasoning—i.e., to reason through sentences of the form “I think that you think that

I think. . . ” There is evidence from cognitive psychology that subjects are limited in their ability

to engage in interactive reasoning. (See, e.g., Perner and Wimmer, 1985; Kinderman, Dunbar, and

Bentall, 1998; Stiller and Dunbar, 2007, amongst many others.) Such limitations can, in turn, limit

players’ ability to engage in reasoning about rationality. But, at least in principle, there can be

bounded reasoning about rationality even if players do not face limitations in their ability to engage

in interactive reasoning. For instance, given her past experiences, Ann may not be prepared to

believe that Bob is rational. Or, she may believe that Bob is rational, but may not be prepared to

believe that Bob believes she is rational. And so on.

Is bounded reasoning about rationality driven by limitations on players’ ability to engage in in-

teractive reasoning? Or, are there systematic bounds on reasoning about rationality that cannot be

explained by such ability limitations? This paper provides a conceptual and practicable framework

to address this important question. It shows that rationality bounds cannot entirely be explained

by limited ability to engage in interactive reasoning. We, first, discuss the importance of addressing

the question. Second, we turn to the approach, providing an overview of the framework. Third,

we preview the results and their implications for out of sample predictions. Finally, we discuss

connections to the literature.

Importance of the Question Addressing the question is important for at least two reasons:

the external validity of laboratory experiments and for how behavioral game theory builds models

of bounded reasoning.

First, in a laboratory setting, experimental game theory has shown that there is bounded

reasoning about rationality. But, it leaves open whether those bounds are behaviorally relevant

when it comes to important economic and social decisions (i.e., outside of the laboratory). In

fact, when players face more important problems, they may be prepared to think harder. If so,

their ability (or willingness) to engage in interactive reasoning may be endogenous to the nature

of the problem. (See Alaoui and Penta, 2016.) As a consequence, limitations on ability may not

be binding on important decisions. That said, if bounds on reasoning about rationality arise from

other sources—and those other sources are independent of the stakes of the game—then those

bounds may well persist even when it comes to important decisions.

To better understand this last point, consider two executives engaged in an important business

decision. The executives may each be prepared to devote a high level of resources to the problem;

they may reason that the other does the same, etc. That is, they may face no limitations on

their ability to engage in interactive reasoning. Nonetheless, they may exhibit bounded reasoning

about rationality. If the executives have previously interacted—either with each other or with a

population of like-minded executives—they may have observed past behavior that could not be
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rationalized: Based on Ann’s past behavior, Bob may not be prepared to bet on the fact that she

is rational. Even if Bob were prepared to bet on the fact that Ann is rational, Ann may consider

the possibility that Bob considers the possibility that she is irrational. (This might be the case

if, in the past, Ann chose rationally but, given Bob’s past behavior, she concluded that Bob did

not understand important parameters of her problem.) And so on. Thus, despite the fact that the

executives can engage in interactive reasoning, bounded reasoning about rationality may well be

important for understanding how the executives act.

Second, the standard approach in behavioral game theory is to model players as if they are each

characterized by a single bound.1 Implicit in this choice is an assumption that the rationality bound

is determined by the player’s ability to engage in interactive reasoning. An implication is that, if

a player reasons only 2 rounds about rationality, she cannot consider the possibility that the other

player reasons 3 rounds.2 However, if the rationality bound is not determined by the ability to

engage in interactive reasoning, then a player who only reasons 2 rounds about rationality may well

consider the possibility that the other player reasons 3 rounds. (See page 5 below.) The implication

is that players may have a wide range of non-degenerate beliefs about rationality—beliefs that are

not captured by existing models in behavioral game theory. In fact, our analysis will show that the

best fitting model does exhibit such non-degenerate beliefs.

Our Approach The goal is to address the question: Is bounded reasoning about rationality

determined by limitations in the ability to engage in interactive reasoning? The challenge is that

the researcher does not observe the players’ ability bounds. One might hope for an approach in

which the researcher elicits the subject’s ability to engage in such interactive reasoning. However,

the very act of attempting to elicit the subjects’ hierarchies may cause subjects to engage in higher

levels of interactive reasoning than they may otherwise do. In turn, this can suggest evidence

of a gap between the ability and rationality bounds, even if none exists in practice (i.e., absent

intervention of the researcher).

We develop a conceptual and practicable framework that allows us to address the question of

interest. Importantly, the approach will allow us to sidestep the difficulty—that is, it will allow us

to address the question without identifying the players’ ability bounds. We begin by describing the

conceptual framework.

Recall, limited ability to engage in interactive reasoning will limit the players’ ability to reason

about their opponent’s rationality. More broadly, it would also limit their ability to reason about

how their opponent plays the game. The approach will be to identify behavior that is (i) consistent

with a player engaging in interactive reasoning about how her opponent plays the game, but

(ii) inconsistent with interactive reasoning about rationality. Such behavior would indicate that

1This is true of both the level-k and cognitive hierarchy models. The single bound is typically referred to as a
player’s depth of reasoning ; it captures both the rationality and ability bounds. (Though how the ability bounds
are conceptualized differs across the two models.)

2This is true of the level-k model. The caveat is that the cognitive hierarchy model, nonetheless, allows a limited
form of such beliefs. See Appendix A.
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bounded reasoning about rationality is not (entirely) determined by the players’ ability to engage

in interactive reasoning.

With this in mind, it will be useful to distinguish between a rational player and a strategic

player. Say that a player is rational if she plays a best response given her subjective belief about

how the game is played—put differently, if she maximizes her expected utility given her subjective

belief about how the game is played. Say that she is strategic if she has some theory (or method)

for how to play the game. One example of such a theory is maximizing subjective expected utility;

thus, a player who is rational is also strategic. However, a player may be strategic and irrational;

that is, a player may have a decision criterion for playing the game which departs from subjective

expected utility.3

We will distinguish between reasoning about rationality and strategic reasoning:

• Reasoning About Rationality: Say that Ann has a rationality bound of m if she is rational,

believes that Bob is rational, believes that Bob believes she is rational, and so on, up to the

statement that includes the word “rational” m times, but no further.

• Strategic Reasoning: Say that Ann has a strategic bound of k if she is strategic, believes that

Bob is strategic, believes that Bob believes she is strategic and so on, up to the statement

that includes the word “strategic” k times, but no further.

Because rationality is one theory about how to play the game, a subject’s rationality bound m

cannot be higher than her strategic bound k, i.e., m ≤ k.

Now observe that strategic reasoning still requires an ability to engage in interactive reasoning.

Thus, a subject’s ability bound must be at least as high as her strategic bound. Thus, if a subject’s

strategic bound is strictly higher than her rationality bound, i.e., if k > m, then the subject’s

ability bound is also strictly higher than her rationality bound. In that case, bounded reasoning

about rationality is not entirely determined by limited ability to engage in interactive reasoning.

In light of this, to identify a gap between the rationality bound and the ability bound, it suffices

to identify a gap between the rationality bound and the strategic bound. However, doing so poses

a second challenge: identifying the strategic bound. In principle, strategic reasoning is a broad

concept; thus, it is not obvious what (if any) observable implications arise from strategic reasoning.

In Sections 2-3, we point to observable implications in a particular class of games: permuted ring

games, introduced by Kneeland (2015).

Let us preview the identification strategy. To identify both the rationality and strategic bounds,

we assume that all subject’s are rational (i.e., maximize their subjective expected utility). We iden-

tify the rationality bound based on iterated dominance. We identify the strategic bound based on

two identification assumptions: the Principle of Strategic Reasoning and the Principle of Non-

Strategic Reasoning. The logic behind these principles rests on an assumption that strategic be-

havior depends, in systematic ways, on payoffs of the game. The logic presumes that strategic

3Our usage of the term rational is consistent with the usage in epistemic game theory. (See, e.g., Brandenburger, 2007
and Dekel and Siniscalchi, 2014.) Note, for us, a rational player conforms to the “textbook notion of rationality,”
while strategic a strategic player conforms to a “generalized notion of rationality.”
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behavior does not depend on certain fine presentation effects. (Sections 2-3.2.1-3.2.2 will clarify

the presentation effects that are ruled out.) Permuted ring games are well-suited for applying these

principles and, as a consequence, are well-suited for identifying the strategic bound (Remark 3.1).

Preview of Results Section 4 applies the identification strategy to Kneeland’s (2015) experi-

mental dataset. We find that 12% of our subjects have a strategic bound of 1, 22% have a strategic

bound of 2, 28% have a strategic bound of 3, and 38% have a strategic bound of 4. Moreover,

there is a nontrivial gap between subjects’ rationality and strategic bounds. We find that 47% of

the subjects identified as having a low rationality bound (i.e., either 1 or 2) have a higher strategic

bound. The gap between the rationality and strategic bounds is most pronounced for subjects that

have the highest strategic bound (i.e., 4). Further, subjects identified as having a gap between

their rationality and strategic bounds outperform (in terms of average expected payoffs) subjects

identified as having no gap. Thus, players have an incentive to choose a rationality bound lower

than their bound on ability.

We go on to explore the nature of strategic reasoning: If there were no gap between the strategic

and rationality bounds, strategic reasoning would be equivalent to reasoning about rationality.

However, because there is a gap, players can be classified by the extent to which they reason about

rationality. For instance, consider a subject who has a strategic bound of 2. If she also has a

rationality bound of 2 then—not only does she believe that the other players are strategic—she

also believes they are rational. However, if she has a rationality bound of 1, then she only assigns

some probability p ∈ [0, 1) to her opponents’ rationality. That is, strategic reasoning may involve

(possibility degenerate) beliefs about rationality, even if the player does not assign probability 1 to

her opponents rationality.

Section 5 imposes discipline on the nature of these beliefs by studying a Population-Based (PB)

model. The model imposes two assumptions. First, to the extent that players do reason about

rationality, they do so in a way that treats all members of the population symmetrically. Second,

to the extent that players do reason about rationality, they reason that other members of the

population reason as they do. There are many different PB models: one special case of the PB

model is a model in which the rationality bound and the strategic bounds coincide. However, we

show that this is not the PB model that best fits the data. Instead, the PB model that best fits

the data involves non-degenerate beliefs about rationality. That is, it both precludes probabilities

0 and 1, in reasoning about rationality. (Below we discuss the importance.)

Section 6 uses the best fitting PB model to explore an important model selection question. Our

identification strategy presumes that observed behavior is the result of deliberate choices on the

part of subjects. An alternate hypothesis is that there is no gap between rationality and strategic

bounds and, instead, certain observed behavior is an artifact of noise. We show that the best fitting

PB model outperforms the best fitting noisy decision-making model.

Non-Degenerate Beliefs If a subject’s rationality bound is entirely determined by her ability

to engage in interactive reasoning, then she necessarily has degenerate beliefs in reasoning about
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Bob
L R

Ann
U 10,0 0,5
D x,0 10,5

Figure 1.1. A Game Parameterized by x ∈ (−∞, 10)

rationality. For instance, consider a subject who has a rationality bound of m = 2. The subject

assigns probability one to “Bob is rational,” but not “Bob is rational and believes I am rational.” If

her rationality bound is determined by her ability to engage in interactive reasoning, the failure to

believe “Bob is rational and believes I am rational” results from her inability to specify higher-order

reasoning. Thus, the subject must also have a strategic bound of k = 2.

By contrast, if there is a gap between a subject’s rationality and strategic bounds, then there

is scope for non-degenerate beliefs in reasoning about rationality. As discussed, Section 5 shows

that the best fitting PB model must have such non-degenerate beliefs. So, if a subject is identified

as having a gap between her rationality and strategic bounds, her behavior is best explained by

non-degenerate beliefs about rationality. We already argued that these non-degenerate beliefs have

important implications for building models of behavioral game theory. (See page 3.) But, as we

now discuss, they also have important implications for interpreting extant experimental results.

Some papers have found that subjects’ identified levels of reasoning change across games. (See

Georganas et al., 2015, Cooper et al., 2016.) This has been interpreted as an instability in the

levels of reasoning—that a subject may reason m levels in one game and m′ levels in another game.

However, the same behavior can instead reflect non-degenerate beliefs about rationality. To see why,

refer to Figure 1.1. If Ann plays a strategy that survives two rounds of iterated dominance, then

she must play D. If, instead, she plays a strategy that survives one round—but not two rounds—

of iterated dominance, then she must play U . Importantly, these conclusions hold irrespective

of the parameter x. The first case—i.e., two rounds of iterated dominance—corresponds to the

scenario where Ann plays a best response given a belief that assigns probability p = 1 to Bob’s

rationality. The second case—i.e., one round of iterated dominance—corresponds to the scenario

where Ann plays a best response given a belief that assigns probability p = 0 to Bob’s rationality.

Thus, if she has a degenerate belief about Bob’s rationality (i.e., a belief that assigns p ∈ {0, 1} to

Bob’s rationality), her best response would not depend on the parameter x and so our predictions

would be the same for any x ∈ (−∞, 10). However, if Ann assigns probability p ∈ (0, 1) to Bob’s

rationality, then her best response will depend on the parameter x. That is, if her behavior is driven

by non-degenerate beliefs about Bob’s rationality, then our predicted behavior should vary across

this class of games. In fact, Cooper et al. (2016) shows that varying a player’s payoff parameter in

this way does impact the play of the game.

Related Literature There is a long history of studying iterative reasoning in games. Bernheim

(1984) and Pearce (1984) defined iterative reasoning as rationalizability ; subsequent work has drawn
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a relationship between rationalizability and reasoning about rationality (as used in this paper). A

prominent and influential literature sought to study limitations on such iterative reasoning using

level-k and cognitive hierarchy models (e.g., Nagel, 1995; Stahl and Wilson, 1995; Costa-Gomes,

Crawford, and Broseta, 2001; Camerer, Ho, and Chong, 2004; Costa-Gomes and Crawford, 2006;

Arad and Rubinstein, 2012). There is a subtle relationship between rationalizability, the level-k

model, and the cognitive hierarchy model. See Appendix A.

The level-k and cognitive hierarchy models are often motivated by limitations on the players’

ability to engage in interactive reasoning. (See, e.g., Nagel, 1995, pg. 1313 or Camerer, Ho, and

Chong, 2004, pg. 864.) This idea is so engrained in the literature that papers typically use the

phrase “depth of reasoning” to refer to both the ability and the rationality bounds. (This is so

even in the current literature.) In fact, that one bound is identified based on the extent to which

subjects iterate over best responses: A subject is identified as a level-k thinker if she performs

exactly k rounds of iterated best responses.4

That said, Arad and Rubinstein (2012) do note that the rationality bound may be distinct

from the ability bound. In fact, one might hope to use their results to provide evidence that the

rationality bound is not driven by limits in the ability to engage in interactive reasoning: In the

context of the 11-20 game, they show that most subjects are level-k thinkers for k = 1, 2, 3. Because

the 11-20 game is strategically simple, one might posit that—within that specific game—subjects

have unlimited ability to engage in interactive reasoning; thus, the fact that subjects are level-k

thinkers (for low k) may point to a gap between the rationality and ability bounds. While this

evidence is suggestive of a gap, the paper does not identify a gap. First, the paper does not

provide a method for identifying an ability bound. (While the game is strategically simple, it does

not imply that a fortiori subjects engage in an unlimited number of steps of “I think, you think,

I think. . ..”) Second, all strategies in the 11-20 game are rationalizable. As a consequence, all

behavior is consistent with unbounded reasoning about rationality.5

Analogously, one might hope to use the results in Agranov, Potamites, Schotter, and Tergiman

(2012), Georganas, Healy, and Weber (2015), Alaoui and Penta (2016), and Gill and Prowse (2016)

to show that reasoning about rationality is not driven by limits in ability. In the context of level-k

models, they show that subjects’ rationality bounds may vary based on whether they are playing

against more versus less sophisticated players.6 At first glance, this variation might suggest that

reasoning about rationality is not driven by limited ability: If a subject’s ability to engage in

4Sometimes this identification is augmented with auxiliary data that is suggestive of ability limitations. For instance,
Costa-Gomes, Crawford, and Broseta (2001) and Costa-Gomes and Crawford (2006) use look-up patterns, Rubinstein
(2007) uses response times, Chen, Huang, and Wang (2009) and Wang, Spezio, and Camerer (2009) use eye-tracking
data, Burchardi and Penczynski (2014) use incentivized communication, Bhatt and Camerer (2005) and Coricelli
and Nagel (2009) measure brain activity, etc.

5Arad and Rubinstein (2012) employ the level-k model, which allows for auxiliary assumptions about beliefs. They
anchor level-0 players as players that choose 20. Typically, such an anchor is viewed as reflecting the behavior of
irrational players. However, 20 may well be played by “fully rational players,” who expect others to use the Arad
and Rubinstein iterative reasoning and play 11. (In that case, 20 is the unique best response.)

6There are also papers that investigate the extent to which reasoning varies based on whether a subject plays against
another subject versus her own self. See, e.g., Blume and Gneezy (2010) and Fragiadakis, Knoepfle, and Niederle
(2013). An analogous argument applies to that experimental design.
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interactive reasoning does not depend on who her opponents are, then variation in her rationality

bound must indicate that the bound is not entirely determined by the difficulties of interactive

reasoning. However, it is not clear that the premise holds. In particular, the premise would be false

if the subject adapts her effort in interactive reasoning (i.e., how much effort she exerts on “I think,

you think, I think. . . ”), based on who her opponents are. (This is suggested by Alaoui and Penta

(2016).) Thus, absent directly identifying limitations on interactive reasoning—i.e., separate from

identifying the rationality bounds—these results cannot address whether the rationality bounds are

driven by limited ability.

A recent paper by Alaoui and Penta (2017) also addresses whether rationality bounds are

determined by limits in ability. Their identification strategy rests on a “tutorial method.” It

presumes teaching subjects about game theory (e.g., iterative best responses) can influence the

ability bound, but not the rationality bound.

We identify a gap between the rationality and ability bounds, by identifying a gap between the

rationality and strategic bounds. We build on the work of Kneeland (2015). Importantly, Kneeland

implicitly assumes that the rationality bound is determined by limitations on a players’ ability to

engage in interactive reasoning. We introduce the notion of a strategic bound and use this to show

that the rationality bound is not determined by such limitations in ability.7

In the course of our analysis, we show that non-degenerate beliefs about rationality are an

important determinant of behavior. There is a long theoretical literature that explicitly models

non-degenerate hierarchies of beliefs. Those ideas can be used to provide an explicit model of

non-degenerate beliefs about rationality (e.g., Hu, 2007).8

The remainder of this paper is organized as follows. Section 2 gives an example, which highlights

the key ingredients of the identification strategy. Section 3 describes the identification strategy.

Section 4 presents the main empirical result: a gap between the strategic and rationality bounds.

Section 5 illustrates that, even if there is a gap between the strategic and rationality bounds, a

subject’s beliefs about play can be reinterpreted as beliefs about rationality. It shows that the

observed gap is best explained by non-degenerate beliefs about rationality. Section 6 uses this

characterization to show that the observed gap is not an artifact of noisy decision-making.

2 An Illustrative Example

Figures 2.1a-2.1b describe two games, G and G∗. The payoff matrices on the left represent player

1’s payoffs and the payoff matrices on the right represent player 2’s payoffs. We will write (d, e∗)

7Whether there can be a gap between the bounds has implications for the interpretation of the rationality bound.
Kneeland (2015) assumes that there is no gap and uses that hypothesis to identify the exact level of reasoning about
rationality consistent with the data. We show that there can be a gap between the rationality and the strategic
bound. This suggests that the rationality bounds identified in Kneeland are best interpreted as the maximum level
of reasoning about rationality consistent with the data.

8Hu (2007) carries out his analysis in the context of a standard type structure, which does not capture limits in
ability. However, in principle, the frameworks in Kets (2011) and Heifetz and Kets (2017) can be used to model
non-degenerate beliefs about rationality when there are ability limitations.

8



to denote that a player chooses action d in G and action e∗ in G∗. We often refer to such an action

profile as a strategy. Notice three features of these games. First, for Player 1 (P1, she), the payoff

matrix given by G∗ is a relabeling of the payoff matrix given by G. Specifically, the row a in G is

labeled c∗ in G∗, the row b in G is labeled a∗ in G∗, and the row c in G is labeled b∗ in G∗. Second,

in each game, P1 has a dominant action; it is a in G and c∗ in G∗. Third, in the two games, Player

2 (P2, he) has the same payoff matrix.

P1’s Payoffs

P2
a b c

P1
a 12 16 14
b 8 12 10
c 6 10 8

P2’s Payoffs

P1
a b c

P2
a 20 14 8
b 16 2 18
c 0 16 16

(a) Figure G

P1’s Payoffs

P2
a∗ b∗ c∗

P1
a∗ 8 12 10
b∗ 6 10 8
c∗ 12 16 14

P2’s Payoffs

P1
a∗ b∗ c∗

P2
a∗ 20 14 8
b∗ 16 2 18
c∗ 0 16 16

(b) Figure G∗

Figure 2.1. A Two-Player Example

Rational vs. Strategic To illustrate the relationship between rational and strategic behavior,

we focus on P1. Suppose that P1 is rational, in the sense that she chooses a best response given her

subjective belief about how P2 plays the game. Then, she would play the strategy (a, c∗). Notice

that, if she is rational, then she has a specific theory about how to play the game. This is the sense

in which we will say that she is also strategic.

At least in principle, P1 may be strategic and irrational. For instance, suppose that P1 instead

adopts a rule of thumb, in which she plays an action that could potentially lead to a payoff of

6, provided that such an action exists. She does so, even if such an action does not maximize

her expected utility given her subjective belief about how to play the game. For the purpose of

illustration, she adopts such a method for playing the game, because 6 is her lucky number. In this

case, she would choose the “lucky-6” strategy profile (c,b∗).

Reasoning about Rationality vs. Strategic Reasoning To illustrate the relationship be-

tween reasoning about rationality and strategic reasoning, we focus on P2. Throughout the discus-

sion, we suppose that P2 is rational (and so strategic). We will distinguish between three scenarios.

First, suppose that P2 reasons about rationality. By this we mean, P2 believes—i.e., assigns

probability 1 to the event—that P1 is rational. In this case, he must assign probability 1 to P1
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playing (a, c∗). As P2 is rational, he chooses a best response to this belief; he thus plays (a,b∗).

Notice, because P2 believes that P1 is rational, P2 also believes that P1 is strategic. Put differently,

since P2 reasons that P1 is rational, he also reasons that P1 is strategic.

Second, suppose that P2 does not assign probability 1 to P1’s rationality, but does assign

probability 1 to P1 being strategic. For instance, he may assign probability 4/5 to the rational

strategy (a, c∗) and probability 1/5 to the lucky-6 strategy (c,b∗). In this case, his best response is

to play (a, c∗).

Third, suppose that, unlike the two scenarios above, P2 reasons that P1 is not strategic. In this

case, he reasons that P1 does not have a theory about how to play the game. As a consequence,

he thinks that P1’s behavior does not depend on specific parameters of the game—including P1’s

payoffs. Thus, P2 has the same belief about how P1 plays the game in both G and G∗. That is, if

he assigns probability p to P1 playing a, then he also assigns probability p to P1 playing a∗. And,

similarly, for b (resp. c) and b∗ (resp. c∗). This has important implications for how P2 plays the

game. In particular, since P2 has the same payoff matrix in G and G∗, this implies that P2 plays

a constant strategy—i.e., (a, a∗), (b, b∗), or (c, c∗).

Observe that both the first and third scenarios involve no gap between reasoning about ratio-

nality and strategic reasoning. In the first case, P2 reasons both that P1 is rational and that P1

is strategic. In that case, he rationally plays the only strategy that survives two rounds of iterated

dominance. In the third case, P2 reasons that P1 is not strategic and, so, he also reasons that P1 is

irrational. In that case, he rationally plays a constant strategy. By contrast, the second scenario is

an example where there is a gap between reasoning about rationality and strategic reasoning: P2

assigns probability 1 to P1 being strategic, but does not assign probability 1 to P1 being rational.

He, then, rationally plays a non-constant strategy—one that does not survive iterated dominance.

Identification A player’s strategic bound must be at least as high as her rationality bound: If

she is not strategic, then she cannot be rational. So, if she reasons that the other player is not

strategic, then she also reasons that the other player is irrational.

Notice, however, that a player’s strategic bound may be strictly higher than her rationality

bound. If it is, then it indicates that bounded reasoning about rationality is not entirely determined

by limits in ability.9 With this in mind, our question is: Does there exist a gap between the strategic

and rationality bounds? We seek a conservative estimate of the gap. As such, we seek to identify:

(i) The maximum level of reasoning about rationality consistent with observed behavior.

(ii) The minimum level of strategic reasoning consistent with observed behavior.

The example illustrates how we identify these bounds.

To identify these bounds, we assume that the observed behavior is rational, in the sense that it

is consistent with a player’s choosing a best response given her belief. (Most of the observations in

9Recall from the Introduction: The strategic bound need not correspond to an ability bound. Instead, we use the
strategic bound as a vehicle to show that the rationality bound is not entirely determined by limitations in ability.
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our dataset are consistent with rational behavior; we restrict attention to those observations.) As

a consequence, we assume that all behavior is strategic. That is, we do not attempt to distinguish

rational behavior from strategic behavior. Instead, our identification focuses on reasoning about

rationality vs. strategic reasoning. In light of this, we focus on the observed behavior of P2. We

distinguish between three scenarios.

First, we identify P2 as having a rationality bound of 2 if his behavior is consistent with being

rational and believing (i.e., assigning probability 1 to the event) that P1 is rational. Thus, we

identify P2 as having a rationality bound of 2 if and only if his behavior is consistent with two

rounds of iterated dominance—i.e., if and only if we observe P2 play (a, b∗). Notice that this

behavior—i.e., the strategy (a, b∗)—is also consistent with P2 being rational and assigning (only)

probability 9/10 to P1’s rationality. (For instance, it is a best response for P2 to play (a,b∗), if he

assigns probabilities Pr(a, c∗) = 9/10 and Pr(b, a∗) = Pr(c, ab) = 1/20.) But because we seek the

maximum level of reasoning about rationality consistent with observed behavior, we identify the

rationality bound as 2.

If we identify P2 as having a rationality bound of 2, then we also identify P2 as having a

strategic bound of 2. To understand why, notice that if P2’s behavior is consistent with a rational

P2 believing that P1 is rational, then it is also consistent with a rational P2 believing that P1 is

strategic. Importantly, such behavior is inconsistent with a rational P2 believing that P1 is not

strategic: Recall, if P2 is rational and believes that P1 is not strategic, then P2’s behavior does not

vary across G and G∗. Thus, if we observe P2 play the non-constant action profile (a, b∗), we must

conclude that P2 reasons that P1 is strategic. As such, the minimum level of strategic reasoning

consistent with observed behavior is 2; we identify this behavior as having a strategic bound of 2.

Second, we identify P2 as having a strategic bound of 1 if his behavior is consistent with being

rational and believing (i.e., assigning probability 1 to the event) that P1 is not strategic. Thus, we

identify P2 as having a strategic bound of 1 if and only if he plays a constant strategy. To understand

why, recall that if a rational P2 believes that P1 is not strategic, then he plays a constant action

profile. Moreover, each constant action profile is consistent with a rational P2 believing that P1

is not strategic. (For instance, it is a best response for P2 to play (a, a∗), if he assigns probability

1 to P1 also playing (a, a∗).) Notice that this behavior—i.e., the constant strategy (a, a∗)—is also

consistent with a rational P2 believing that P1 is strategic. (For instance, it is a best response for

P2 to play (a, a∗) if he assigns probabilities Pr(a, c∗) = 2/5 and Pr(b, a∗) = Pr(c, b∗) = 3/10.) But

because we seek the minimum level of strategic reasoning consistent with observed behavior, we

identify the strategic bound as 1.

If we identify P2 as having a strategic bound of 1, then we also identify P2 as having a rationality

bound of 1. To understand why, notice that if a rational P2 plays a constant strategy, then he

cannot believe that P1 is rational. As such, the maximum level of reasoning about rationality

consistent with observed behavior is 1; we identify this behavior as having a rationality bound of 1.

In these first two scenarios, we would not identify a gap between the rationality and strategic

bounds. We will identify a gap between P2’s rationality and strategic bounds if he plays a non-
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constant strategy profile that differs from (a, b∗). As an illustration, suppose we observe P2 play

(a, c∗). This behavior is consistent with one round—but not two rounds—of iterated dominance.

Thus, we would identify P2 as having a rationality bound of 1. At the same time, because this

observation is not a constant strategy, it is inconsistent with a rational P2 believing that P1 is not

strategic. Moreover, we have also seen that it is consistent with a rational P2 believing that P1 is

strategic. Thus, we identify the subject as having a strategic bound of 2.

Identifying the Bounds: A Comment Suppose that P2 reasons about P1’s rationality. In

the above discussion, we think of this scenario as one in which P2 believes—i.e., assigns probability

1 to the event—that P1 is rational. If P2 assigns probability p = 4/5 to P1’s rationality, we think

of this as a departure from reasoning about rationality.

Likewise, we think of P2’s strategic reasoning as believing—i.e., assigning probability 1 to the

event—that P1 is strategic. But, if P2 assigns probability p = 4/5 to the event that P1 is strategic,

we do not think of this as lack of strategic reasoning. Such a belief would exhibit an ability to

engage in interactive reasoning. Thus, we only identify P2’s strategic bound as 1 if he believes that

P1 is not strategic—i.e., if he assigns probability 0 to the event that P1 is strategic.

This conceptual point has a pragmatic implication for how we identify the strategic bound:

We only identify P2’s strategic bound if his behavior is consistent with rationality and assigning

probability p ∈ {0, 1} to the event that P1 is strategic. We identify P2 as having a strategic bound

of 1 if we can take p = 0—i.e., if P2’s behavior is consistent with rationality and belief that P1 is

not strategic. We identify P2 as having a strategic bound of 2 if we cannot take p = 0 but can

take p = 1—i.e., if P2’s behavior is consistent with rationality and belief that P1 is strategic, but

inconsistent with rationality and belief that P1 is not strategic.10 By restricting p to be in {0, 1},
we limit our ability to rationalize the data.

To sum up, we have used this example to illustrate how we can separately identify the strategic

and rationality bounds. We identify these bounds in a way that gives a conservative estimate of

the gap. In this two-player example, we can only identify the gap up to two levels of reasoning.

The paper studies a four-player game and experiment. This allows us to identify the gap up to four

levels of reasoning. The next section explains the identification strategy.

3 Identification

Figures 3.1a-3.1b describe two games, G and G∗, from Kneeland (2015). Each of the games has a

ring structure: Player i’s (Pi’s) payoffs depend only on the behavior of Player (i − 1) (P(i − 1)).

(We adopt the convention that P0 ≡ P4).

10Notice, there is a difference between (a) not believing that a player is strategic and (b) believing that the player is
not strategic. In the former case, there is uncertainty whether the player has a theory for playing the game. In the
latter case, it is certain that the player does not have a theory for playing the game (and, so, it is certain that her
behavior does not depend on specific parameters of the game). We restrict attention to the latter scenario.
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P1’s Payoffs

P4
a b c

P1
a 12 16 14
b 8 12 10
c 6 10 8

P2’s Payoffs

P1
a b c

P2
a 20 14 8
b 16 2 18
c 0 16 16

P3’s Payoffs

P2
a b c

P3
a 14 18 4
b 20 8 14
c 0 16 18

P4’s Payoffs

P3
a b c

P4
a 8 20 12
b 0 8 16
c 18 12 6

(a) Figure G

P1’s Payoffs

P4
a∗ b∗ c∗

P1
a∗ 8 12 10
b∗ 6 10 8
c∗ 12 16 14

P2’s Payoffs

P1
a∗ b∗ c∗

P2
a∗ 20 14 8
b∗ 16 2 18
c∗ 0 16 16

P3’s Payoffs

P2
a∗ b∗ c∗

P3
a∗ 14 18 4
b∗ 20 8 14
c∗ 0 16 18

P4’s Payoffs

P3
a∗ b∗ c∗

P4
a∗ 8 20 12
b∗ 0 8 16
c∗ 18 12 6

(b) Figure G∗

Figure 3.1. Kneeland’s (2015) Ring Game

Let us point to two features of the games. First, G and G∗ are both dominance solvable. This

will be useful for identifying the rationality bound. Second, P1’s and P2’s payoff matrices are as in

the example in Section 2. So, for P1, the payoff matrix in G∗ is a relabeling of the payoff matrix

in G. P2 has the same payoff matrix across the two games. The same is also true for P3 and P4.

This will be useful for identifying the strategic bound.

Each subject plays both games (G and G∗) in each of the player roles (P1, P2, P3, and P4).

As such, an observation consist of a subject’s behavior across eight games—that is, an observation

is an x = (x(1), x(2), x(3), x(4)), where each x(i) ∈ {a,b, c} × {a∗, b∗, c∗} indicates the subject’s

behavior in the role of Pi across both G and G∗. We assume that each subject is rational (and, so,

strategic). Thus, we can use the subjects’ behavior across both the games and the player roles to

provide a lower bound on strategic reasoning and an upper bound on reasoning about rationality.

This provides us with a conservative estimate (i.e., an underestimate) of the gap between the

strategic and rationality bounds.

Bounds P1 P2 P3 P4

Rationality = Strategic = 1 IU Constant Constant Constant

Rationality = Strategic = 2 IU IU Constant Constant

Rationality = Strategic = 3 IU IU IU Constant

Rationality = Strategic = 4 IU IU IU IU

Table 3.1. Identifying Bounds: No Gap

Table 3.1 previews of how we identify the rationality and strategic bounds. It focuses on the

case where there is no gap between the two bounds. Observe, if a subject has a rationality bound

of m then, for each i ≤ m, the subject plays the iteratively undominated (IU) strategy in the role

13



of Pi—but not in the role of P(m + 1). If the subject has a strategic bound of m then, for each

i > m, the subject plays a constant strategy profile in the role of Pi—but a non-constant strategy

profile in the role of Pm. The next subsections elaborate on the identification strategy.

3.1 Identifying the Rationality Bounds

Return to the example in Section 2: We pointed out that a rational subject in the role of P1 will

play (a, c∗). This corresponded to the fact that (a, c∗) is a dominant strategy for P1. We also

pointed out that a rational subject who believes “P1 is rational” will play (a,b∗) in the role of

P2. This corresponded to the fact that (a, b∗) is the only strategy that survives two rounds of

iterated dominance for P2. Thus, we used iterated dominance to identify the level of reasoning

about rationality. This will be the approach that we take more generally.

To better understand what is involved, it will be useful to introduce some terminology: Say a

subject is 1-rational if, in the role of each Pi, she plays a best response given a belief about P(i−1)’s

play of the game. Say a subject is m-rational if, in the role of each Pi, she plays a best response

given a belief that assigns probability one to the event that P(i − 1) is (m − 1)-rational. There is

a tight connection between m-rationality and iterated dominance: A subject is m-rational if and

only if, in the role of each Pi, she plays a strategy that survives m rounds of iterated dominance.11

Identification (Rationality Bound). Given an observation x = (x(1), x(2), x(3), x(4)), we assign

a rationality bound of k if

(i) x = (x(1), x(2), x(3), x(4)) survives k rounds of iterated dominance, and

(ii) if k = 1, 2, 3, then x = (x(1), x(2), x(3), x(4)) does not survive (k + 1) rounds of iterated

dominance

A subject’s behavior is identified as having a rationality bound of k if her behavior is consistent

with k-rationality and her behavior is inconsistent with (k + 1)-rationality when k 6= 4. Note, if

the behavior is identified as having a rationality bound of 4, then it is consistent with “rationality

and common belief of rationality” (i.e., k-rationality for all k).

In these games, an observation x = (x(1), x(2), x(3), x(4)) survives k rounds of iterated dom-

inance if and only if (x(1), . . . , x(k)) is IU. Under iterated dominance, P1 would play (a, c∗), P2

would play (a, b∗), P3 would play (b, a∗), and P4 would play (a, c∗). Table 3.2 then summarizes

how we identify the rationality bound.

It is important to note that the identification strategy makes use of the subject’s behavior

across all player roles. For instance, suppose we observe some x = (x(1), x(2), x(3), x(4)), where

x(2) = (b, a∗) and x(4) = (a, c∗). If we focus on the observed subject’s behavior in the role of

11Our definition of m-rationality is consistent with formalizations in the epistemic literature. See, e.g., Tan and
da Costa Werlang (1988). Using standard results, a subject’s behavior is consistent with m-rationality if and only
if it survives m rounds of rationalizability (Bernheim, 1984; Pearce, 1984). See, e.g., Tan and da Costa Werlang
(1988), Battigalli and Siniscalchi (2002), amongst others. A strategy survives m rounds of rationalizability if and
only if it survives m rounds of iterated strict dominance. See Pearce (1984).
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Bound P1 P2 P3 P4

Rationality = 1 IU = (a, c∗) not IU

Rationality = 2 IU = (a, c∗) IU = (a, b∗) not IU

Rationality = 3 IU = (a, c∗) IU = (a, b∗) IU = (b, a∗) not IU

Rationality = 4 IU = (a, c∗) IU = (a, b∗) IU = (b, a∗) IU = (a, c∗)

Table 3.2. Identifying Rationality Bound

P4, then we would use the fact that x(4) survives four rounds of iterated dominance to conclude

that the subject’s rationality bound is 4. This would, in particular, imply that the subject assigns

probability one to the event that “P3 is rational.” However, the subject’s behavior in the role of

P2, namely x(2), does not survive two rounds of iterated dominance. As such, it is inconsistent

with a rational subject who assigns probability one to the event that “P1 is rational.” Thus, we

identify the subject’s rationality bound as 1.

3.2 Identifying the Strategic Bounds

Return to Section 2: We identified P2’s strategic bound based on whether he played a constant

versus a non-constant strategy. (Recall, a constant strategy is some strategy (d, d∗).) In particular,

we saw that, if a rational subject in the role of P2 believes “P1 is not strategic,” the subject will

play a constant strategy. On the other hand, if a rational subject in the role of P2 believes “P1 is

strategic,” the subject may play a non-constant strategy.

Bound P1 P2 P3 P4

Strategic = 1 Dominant (a, c∗) Constant Constant Constant

Strategic = 2 Dominant (a, c∗) Non-Constant Constant Constant

Strategic = 3 Dominant (a, c∗) Non-Constant Constant

Strategic = 4 Dominant (a, c∗) Non-Constant

Table 3.3. Identifying Strategic Bound

This is the approach that we will take more generally. Refer to Table 3.3. If we identify a

subject as having a strategic bound of k, then the subject plays a non-constant strategy in the role

of Pk and a constant strategy in the role of Pj for all j > k. (Recall, we assume that each subject

is rational. Thus, we restrict attention to subjects that play the dominant strategy in the role of

P1. This accounts for the P1 column in Table 3.3.)

To identify the strategic bound, we make two interrelated assumptions. First, we assume that

behavior is not an artifact of a subject’s indifference. That is, we assume that no subject—in any

player role—is indifferent between any two actions. (Kneeland’s footnote 20 points out that the

data from this experiment supports the assumption.12) Because we also assume that each subject

is rational, this implies that each subject chooses amongst pure strategies. Second, we assume that

12Her footnote 20 discusses rationalizable actions, but the same argument applies more broadly in the data.
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each subject believes that other subjects choose pure strategies. Importantly, this does not imply

that a subject’s beliefs about the strategies of the other players is degenerate. (Below we provide

examples of non-degenerate beliefs.)

The remainder of Section 3.2 spells out the assumptions underlying the identification strategy.

Some readers may prefer to skip this material, so as to get more quickly to the results.

3.2.1 Strategic Optimality

We pointed out that a player may be strategic but irrational: That is, a player may have a purpose

for choosing the action she does, even if she does not play a best response given her belief about

play. For instance, in Section 2, we said that a player may adopt a rule of thumb in which she

chooses an action that could lead to her lucky number 6 whenever such an action is available. The

implication was that such a player would play c in G and the payoff-equivalent action b∗ in G∗.

In our analysis, a strategic (but potentially irrational) player is a player whose decisions are

determined by her payoff matrix and potentially her beliefs about play. For instance, she may

adopt a rule of thumb whereby she always chooses the action that generates the highest arithmetic

mean. Or, she may adopt a rule of thumb whereby she, first, chooses an action that could lead

to a payoff of 6 if such an action exists and, second, if not, she plays a best response given her

subjective belief about the play of the game. Or, alternatively, she may adopt the rule of thumb

whereby she plays a best response given her subjective beliefs (i.e., she may be rational). Each of

these rules of thumb correspond to a theory about how to play the game. In each of the examples,

the decision depends on her payoff matrix. In the two latter examples, the decision also depends

on her beliefs about play. Each of these rules of thumb selects actions to be played. For instance,

the first rule of thumb can select any action that generates the highest mean. We will refer to any

action that the rule of thumb can select as a strategically optimal action.

Consider a strategic P1. An important case is where she has the same belief about P4’s play

(across G and G∗) or adopts a rule of thumb that does not depend on her belief about P4’s play. In

that case, if her theory of how to play the game leads her to play a in G, it should lead her to play

c∗ in G∗. Put differently, if a is strategically optimal in G, then c∗ is also strategically optimal in

G∗. And, likewise, if b (resp. c) is strategically optimal in G, then a∗ (resp. b∗) is also strategically

optimal in G∗.

The same idea applies to Pi = P2,P3,P4. Suppose Pi has the same belief about P(i − 1)’s

play or adopts a rule of thumb that does not depend on her belief about P(i− 1)’s play. Then, if

her theory of how to play the game leads her to play d ∈ {a, b, c} in G, it should lead her to play

d∗ ∈ {a∗,b∗, c∗} in G∗—after all, the two games involve the very same payoff matrix for Pi.

We can abstract a general principle from these two scenarios: For each player Pi there is a

permutation Πi of i’s actions from G to G∗ that preserves Pi’s payoff matrix. For i = 1, the

permutation maps a 7→ Π1(a) = c∗, b 7→ Π1(b) = a∗, c 7→ Π1(c) = b∗; for i = 2, 3, 4, the

permutation maps each d 7→ Πi(d) = d∗. If a strategic Pi adopts a rule of thumb that does not

depend on her belief about P(i− 1)’s behavior, then her rationale for choosing action d in G would
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also serve as a rationale for playing the permuted action Πi(d) in G∗. The same conclusion holds

for any strategic Pi, if she has the same beliefs about P(i − 1)’s behavior across G and G∗ (i.e.,

if the probability she assigns to d in G is the same as the probability she assigns to Π(i−1)(d) in

G∗). Put differently, in these cases, Pi’s strategic optimality is invariant to the permutation of

payoff-equivalent action labels.

3.2.2 Two Principles for Identification

When we identify the subjects’ reasoning, we will assume that they are rational—not simply strate-

gic. Instead, we use the ideas above to restrict the beliefs of a subject. We will think of Pi as

having a belief about P(i − 1)’s behavior across G and G∗. We write Pri for Pi’s distribution

on {a, b, c} × {a∗,b∗, c∗}. So, Pri(d, e∗) is the probability that Pi assigns to P(i − 1) playing the

strategy (d, e∗).

We will say that a subject believes strategic behavior if in each player role Pi she satisfies the

following principle:

Principle of Strategic Reasoning: Suppose Pi believes that “P(i − 1) is strategic

and P(i − 1) has the same beliefs about P(i − 2)’s behavior across G and G∗.” Then,

Pri(d, e∗) > 0 implies e∗ = Π(i−1)(d).

Suppose that Pi believes that “P(i−1) is strategic and P(i−1) has the same beliefs about P(i−2)’s

behavior across G and G∗.” Then Pi believes that P(i−1)’s strategic optimality is invariant to the

permutation of payoff-equivalent action labels (for P(i− 1)). The Principle of Strategic Reasoning,

thus, requires that, if Pi assigns probability p to P(i − 1) playing the action d in G, then Pi also

assigns probability p to P(i− 1) playing the strategy (d,Πi−1(d)).

To better understand this principle, suppose that P2 believes that P1 is strategic and that P1

has the same beliefs about P4’s behavior across G and G∗. P2 can still have non-degenerate beliefs

about P1’s play. For instance, P2 may assign probability 1/2 to P1 playing a best response and

probability 1/2 to P1 adopting the lucky-6 rule of thumb. In that case, Pr2(a, c∗) = Pr2(c,b∗) = 1/2.

The Principle of Strategic Reasoning implicitly requires that—across the games G and G∗—P2 has

the same belief about the nature of P1’s strategic optimality criterion. So, for instance, P2 cannot

assign probability 1 to P1 playing a best response in G and probability 1 to P1 playing the lucky-6

strategy in G∗. If P2 had such a belief, he would believe that P1’s theory of how to play the game

changes across G and G∗, despite the fact that the two games are payoff equivalent (up to the

permutation of action labels).13

13Another example may be useful: Suppose P3 believes that P2 maximizes her expected payoffs and that P2 assigns
probability 5/7 : 2/7 to (a, a∗) : (c, c∗). Then P3 believes that P2 is indifferent between playing a and b in G. The
Principle of Strategic Reasoning requires that P3 thinks that the method that P2 uses to resolves this indifference
in G gets translated into G∗. For instance, P3 may reason that P2 resolves this indifference in G by choosing
the action with the highest maximum payoff (i.e., a); but, if so, then P3 must also reason that P2 resolves this
indifference in G∗ by choosing the action with the highest maximum payoff (i.e., a∗). If not, P2 would effectively
be using a different notion of strategic optimality across the two games.
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Consider now the case where a subject believes that others are not strategic. To better under-

stand the approach, return to the example (Section 2). We explained that, if P1 is not strategic,

then P1 does not have a theory about how to play the game. As a consequence, P1’s behavior

cannot depend on details of the game. Thus, if P2 believes that P1 is not strategic, then P2 has

the same belief about P1’s play in both G and G∗: If P2 assigns probability p to P1 playing d in

G, then he also assigns probability p to P1 playing d∗ in G∗.

This is the approach we take more generally. If a subject believes that others are not strategic,

then she reasons that their behavior does not depend on the details of the game. This implies

that, within a given player role, she reasons that the behavior of other subjects does not depend

on whether G versus G∗ is played. But, within a given a game, it also implies that she reasons that

the behavior of other subjects does not depend on the player role. (This is a reasonable assumption

in the context of the experiment, where subjects do not observe the identity of their co-players.)

With this in mind, we will say that a subject believes other players are not strategic if she

satisfies the following principle:

Principle of Non-Strategic Reasoning: The subject has the same belief Pr in

each player role, i.e, Pri = Pr for each i = 1, 2, 3, 4. Moreover, this belief satisfies

Pr(a, a∗) + Pr(b,b∗) + Pr(c, c∗) = 1.

We will call a belief for Pi, Pri, a constant belief (for Pi) if Pri(a, a∗) + Pri(b,b∗) + Pri(c, c∗) = 1.

The Principle of Non-Strategic Reasoning says that the subject has the same constant belief in

each player role.

To better understand this principle, suppose that P2 believes that P1 is not strategic. P2 can

still have non-degenerate beliefs about P1’s play. For example, P2 may assign probability 1/2 to P1

choosing a in G and a∗ in G∗, and probability 1/2 to P1 choosing b in G and b∗ in G∗. In that case,

Pr(a, a∗) = Pr(b, b∗) = 1/2. The Principle of Non-Strategic Reasoning implicitly requires, however,

that a player has the same belief about the nature of others’ non-strategic behavior across roles and

across games. So, for instance, P2 cannot assign probability 1 to P1 playing a in G and probability

1 to b∗ in G∗. Likewise, a subject cannot assign probability 1 to the strategy (a, a∗) in the role of

P2, and probability 1 to (b,b∗) in the role of P3. If a subject has such a belief, he would believe

that other subjects’ behavior depend on the details of the game.

We will use these principles to inductively define k-strategic (an analogue of m-rationality)

and the strategic bounds. Call a subject 1-strategic if, in each player role, she is strategic. Call a

subject 2-strategic if she is 1-strategic and, in each player role, she satisfies the Principle of Strategic

Reasoning. Inductively, say a subject is k-strategic if she is (k − 1)-strategic and she believes (i.e.,

assigns probability one to the event) that the other player is (k − 1)-strategic. Say that a subject

has a strategic bound of 1 if she is 1-strategic and satisfies the Principle of Non-Strategic Reasoning.

Inductively, a subject has a strategic bound of k if she is k-strategic and believes that other player

has a strategic bound of (k − 1).

Next, we turn to how we identify strategic bounds. Importantly, when we do so, we assume that

each player is rational—not only strategic. (Thus, we will not make use of 1-strategic as an axiom

18



on behavior.) So, for instance, when we identify a subject as having a strategic bound of 1, her

behavior will be consistent with playing a best response given a belief that satisfies the Principle

of Non-Strategic Reasoning. This, of course, implies that her behavior is consistent with being

1-strategic and satisfying the Principle of Non-Strategic Reasoning.

3.2.3 Identifying the Strategic Bounds

We now turn to identify the strategic bounds. To do so, we assume that each subject is rational.

We seek to identify the minimum strategic bound consistent with observed behavior.

Strategic Bound of 1 Consider a rational subject who has a strategic bound of 1. By the

Principle of Non-Strategic Reasoning, the subject has the same constant belief across player roles.

As a consequence, in the roles of Pi = P2,P3,P4, this subject must play a constant strategy: If

d is a best response for Pi, then d∗ is also a best response for Pi. Because we assume that the

subject is not indifferent between any two actions, d∗ must be her unique best response.

Identification (Strategic Bound 1). We identify (x(1), x(2), x(3), x(4)) as having a strategic bound

of 1 if there exists a belief Pr on {a,b, c}×{a∗, b∗, c∗} so that Pr is a constant belief (in each player

role) and each x(i) is a unique best response under Pr.

If we identify an observation x = (x(1), x(2), x(3), x(4)) as having a strategic bound of 1, then x(1)

must be the dominant strategy (a, c∗). (This is the only strategy that can be a best response to

any belief.) So, the observation (x(1), x(2), x(3), x(4)) involves behavior in the role of P1 that is

not constant. However, in the roles of P2, P3, and P4, this observation involves behavior that is

constant. Thus, x ∈ {(a, c∗)} × {(a, a∗), (b,b∗), (c, c∗)}3. Importantly, there may be observations

in {(a, c∗)} × {(a, a∗), (b,b∗), (c, c∗)}3 that would not be identified as having a strategic bound of

1. This is because those observations cannot be a best response given a single belief Pr. Table B.1

in Appendix B provides the observations that are identified as having a strategic bound of 1.

Strategic Bound of 2 Consider a subject who has a strategic bound of 2. In the role of each

Pi, this subject satisfies the Principle of Strategic Reasoning and believes “P(i−1) is strategic and

believes P(i− 2) is non-strategic.” Recall, if P(i− 1) believes that “P(i− 2) is non-strategic,” then

P(i − 1) has the same belief about P(i − 2)’s behavior across G and G∗. Thus, the Principle of

Strategic Reasoning says that Pi must believe that P(i − 1)’s behavior is invariant to permuting

equivalent action labels.

This pins down the subject’s belief about the strategies played. In the role of P2, the subject

believes that, if P1 plays a (resp. b, resp. c) in G then she plays Π1(a) = c∗ (resp. Π1(b) = a∗,

Π1(c) = b∗) in G∗. Thus, P2’s belief, namely Pr2, must satisfy

Pr2(a, c∗) + Pr2(b, a∗) + Pr2(c, b∗) = 1.
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Optimal Given a 2-Strategic Belief

Constant Non-Constant

(a, a∗) (a,b∗) (a, c∗)
(b, a∗) (b, c∗) (c, a∗)

Table 3.4. P2’s 2-Strategic Behavior

We refer to such a belief as a 2-strategic belief. In the role of Pi 6= P2 , the subject believes that,

if P(i − 1) plays a (resp. b, resp. c) in G then she plays Π(i−1)(a) = a∗ (resp. Π(i−1)(b) = b∗,

Π(i−1)(c) = c∗)) in G∗. Thus, for each Pi = P1,P3,P4, Pri is a constant belief for Pi.

A rational subject who has a strategic bound of 2 must play a best response given these beliefs.

In the role of P1, this implies that she plays the dominant strategy (a, c∗). In the role of P2, this

implies that she plays a unique best response given a 2-strategic belief. In the roles of Pi=P3,P4,

she must play a best response to a constant belief. Observe that, if d ∈ {a,b, c} is a best response

(for Pi = P3,P4) in G, then d∗ ∈ {a∗, b∗, c∗} is also a best response (for Pi = P3,P4) in G∗.

Because we assume that no subject is indifferent between any two actions, this implies that the

subject must play a constant strategy in the roles of Pi = P3,P4. With this in mind:

Identification (Strategic Bound 2). We identify (x(1), x(2), x(3), x(4)) as having a strategic bound

of 2 if

(i) x(1) = (a, c∗),

(ii) x(2) is a non-constant strategy that is a unique best response under a 2-strategic belief, and

(iii) x(3) and x(4) are constant strategies.

Suppose that we identify (x(1), x(2), x(3), x(4)) as having a strategic bound of 2. Then x(3) and x(4)

must be constant strategies. Moreover, x(2) must be optimal under a 2-strategic belief. Referring

to Table 3.4, there are five non-constant strategies that are optimal under such a belief. (One

non-constant strategy is precluded.) There is one constant strategy, namely (a, a∗), that is optimal

under such a belief. However, we require that x(2) be non-constant: If x(2) were constant, then the

minimum strategic bound consistent with behavior may well be 1. (For instance, the observation

(x(1), x(2), x(3), x(4)) with x(1) = (a, c∗) and x(2) = x(3) = x(4) = (a, a∗) would be identified as

having a strategic bound of 1.) Even if it were not, observing a constant profile does not provide

evidence in favor of the Principle of Strategic Reasoning. Thus, we tie our hands by not-classifying

observations with x(2) = (a, a∗), unless they can be identified as having a strategic bound of 1.

This limits our ability to rationalize the data.

Strategic Bound of 3 Consider a rational subject who has a strategic bound of 3. As before,

this subject must play the dominant (a, c∗) in the role of P1. Thus, we focus on the behavior in

the roles of P2, P3, and P4. To identify the behavior, we use the fact that, in each player role Pi,

such a subject believes “P(i− 1) is 2-strategic and believes P(i− 2) has a strategic bound of 1.”
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In the role of P2, this subject must play a best response given a 2-strategic belief. The key is

that, if the subject has a strategic bound of 3, then the subject must believe “P1 is strategic and

P1 believes that P4 plays a constant strategy.” (This uses both principles; see Lemma B.1.) Thus,

applying the Principle of Strategic Reasoning, P2 must believe that P1’s behavior is invariant to

the permutation of equivalent action labels and, so, P2 must have a 2-strategic belief.

In the role of P3, the subject can play any strategy. To understand why, note that the subject

believes “P2 is 2-strategic and believes P1 has a strategic bound of 1.” This implies that the

subject believes “P2 is strategic and believes that P1 is strategic,” i.e., that P2 plays a strategically

optimal strategy, given a 2-strategic belief. Because we have taken a broad view of what preferences

strategic optimality might represent, it imposes no restrictions on P2’s behavior when she holds a

2-strategic belief. Thus, P3 can hold any belief about P2’s behavior and, in turn, any strategy of

P3 can be a unique best response.14

In the role of P4, the subject must play a constant strategy. To understand why, note that the

subject believes “P3 is 2-strategic and believes P2 has a strategic bound of 1.” This implies that

the subject has a belief that “P3 is strategic and P3 believes that P2 plays a constant strategy.”

(This uses both principles; see Lemma B.1.) Thus, applying the Principle of Strategic Reasoning,

P4 must believe that P3’s behavior is invariant to the permutation of equivalent action labels and,

so, P4 must have a constant belief. Since the subject is not indifferent between any two actions,

she plays a constant strategy in the role of P4.

Identification (Strategic Bound 3). We identify (x(1), x(2), x(3), x(4)) as having a strategic bound

of 3 if

(i) x(1) = (a, c∗),

(ii) x(2) is a unique best response given a 2-strategic belief,

(iii) x(3) is a non-constant strategy, and

(iv) x(4) is a constant strategy.

Let us point to two features of the identification. First, we require that x(3) be non-constant. A

constant strategy would be a best response for a P3 that believes “P2 is 2-strategic and believes P1

has a strategic bound of 1.” However, because we focus on the minimum strategic bound consistent

with observed behavior, we would assign such an observation—i.e., an observation with both x(3)

and x(4) constant—a lower strategic bound. Second, unlike how we identify a strategic bound

of 2, we do not require that x(2) is non-constant. Now a non-constant x(3) provides evidence in

14We come to the conclusion that any strategy of P3 can be a best response given this belief. We would come to the
same conclusion even if we imposed strong restrictions on P3’s beliefs about P2’s strategic optimality. For instance,
suppose P3 assigns some probability p ∈ (0, 1) to “P2 is rational and believes that P1 has a strategic bound of 1”
and probability (1 − p) ∈ (0, 1) to “P2’s preferences do not depend on her beliefs about P1.” In that case, P3’s
beliefs can be seen as a convex combination of (i) a belief that assigns probability one to the actions in Table 3.4
and (ii) a constant belief. In that case, all strategies can be a best response for P3, depending on the value of p.
(Calculations are available upon request.)
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favor of the Principle of Strategic Reasoning. Thus, no requirement is needed of x(2) beyond the

requirement that it be a best response to a 2-strategic belief.

Strategic Bound of 4 Consider a rational subject who has a strategic bound of 4. In the

roles of P1, P2, and P3, this subject’s behavior is observationally equivalent to the behavior of a

subject with a strategic bound of 3. (Simply repeat the arguments above, replacing Lemma B.1

with Lemma B.2.) The difference comes in behavior in the role of P4. Now, in the role of P4, the

subject believes “P3 is 3-strategic and believes P2 has a strategic bound of 2.” This implies that

the subject has a belief that “P3 is strategic and P3 can hold any belief about P2’s play.” (To see

this, repeat the argument for P3’s behavior when there is a strategic bound of 3.) Thus, P4 can

hold any belief about P3’s behavior and, so, any strategy can be a best response.

Identification (Strategic Bound 4). We identify (x(1), x(2), x(3), x(4)) as having a strategic bound

of 4 if

(i) x(1) = (a, c∗),

(ii) x(2) is a unique best response given a 2-strategic belief,

(iii) x(4) is a non-constant strategy.

Let us point to two features of the identification. First, we require x(4) to be non-constant. A

constant strategy could be a best response for a P4 that believes “P3 is 3-strategic and believes

that P2 has a strategic bound of 2.” However, because we focus on the minimum strategic bound

consistent with observed behavior, we would assign such an observation—i.e., an observation with

x(4) constant—a lower strategic bound. Second, we do not require that x(3) is non-constant. This

is no longer required to ensure that that we cannot assign the observation a lower strategic bound.

We conclude with an important comment about the experimental design.

Remark 3.1. Kneeland (2015) introduced the permuted ring games to identify the rationality

bounds. In fact, the nature of the particular permutations also make the permuted ring games well

suited to identify the strategic bounds. Notice that, for P1, the permutation is non-constant, i.e.,

it does not map any action d in G to the associated action d∗ in G∗. However, for P2, P3, and

P4, the permutation is constant, i.e., it maps every action d in G to the associated action d∗ in

G∗. These differences in the permutations are important for identifying the strategic bound. If

all players had a constant permutation, then we would expect constant behavior across the ring

games, independent of whether a subject reasons that others are strategic versus others are not

strategic. Because P1’s permutation is non-constant, we can separate a strategic bound of 1 from

a strategic bound of k = 2, 3, 4. If, on the other hand, P2’s permutation were also not constant,

then a subject who has a strategic bound of 1 would also play a non-constant strategy in the role

of P3. This would, presumably, conflate the behavior of subjects with a strategic bound of 1 and

subjects with a strategic bound of 2. And similarly for P3 and P4.
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3.3 Identification: Wrap-Up

Table 3.5 summarizes Table 3.2 (identification of the rationality bound) and Table 3.3 (identification

of the strategic bound). The rows in grey correspond to the case where there is no gap between

the identified rationality and strategic bounds (c.f. Table 3.1.)

Rat Str P1 P2 P3 P4

1 1 IU constant constant constant

1 2 IU not “constant or IU” constant constant

1 3 IU not IU not constant constant

1 4 IU not IU not constant

2 2 IU IU constant constant

2 3 IU IU not “constant or IU” constant

2 4 IU IU not IU not constant

3 3 IU IU IU constant

3 4 IU IU IU not “constant or IU”

4 4 IU IU IU IU

Table 3.5. Identified Bounds

Consider an observation (x(1), x(2), x(3), x(4)) identified as having a strategic bound of k. Then,

x(k) is non-constant and x(i) is constant, for all i > k. When there is no gap between the identified

rationality and strategic bounds—that is, if the rationality bound is also identified as k—x(i) is IU

for all i ≤ k. When there is a gap between the identified rationality and strategic bounds, there is

some m < k so that x(i) is IU for all i ≤ m, and x(m+ 1) is not IU.

There are several subtleties obscured by Table 3.5 (resp. Table 3.3). First, to identify the

observation as having a strategic bound of 1, x(2), x(3), and x(4) must be a unique best response

under the same constant belief. (This, for instance, rules out an observation with x(2) = (b, b∗)

and x(3) = x(4) = (a, a∗).) Second, to identify the observation as having a strategic bound of

k = 2, 3, 4, x(2) must be a best response under a 2-strategic belief. (This, for instance, rules out

an observation with x(2) = (c,b∗).) As a consequence, there are strategy profiles that satisfy the

conditions in Table 3.5 but are not classified under our identification strategy. See Table B.1.

4 Results: Gap Between Bounds

We analyze the data from Kneeland’s (2015) experiment. In the experiment, subjects are randomly

assigned an order by which they each play the eight games in Figure 3.1. The games are presented to

the subjects so that the actions across G and G∗ have identical labeling. (That is, in the experiment,

the actions a and a∗ receive the same label. We use different labels only for expositional purposes.)

After the subjects play all eight games and before they have observed any behavior or outcomes, the

subjects are given the opportunity to revise their earlier choices. This mitigates potential learning

concerns. (Refer to Kneeland’s paper for a detailed description of the data.)
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Strategic Bound Potential Observations Subjects

1 13 9
2 35 16
3 108 21
4 324 28

NC Rational 249 1
NC Irrational 5832 5

Total 6561 80

Table 4.1. Inferring the Strategic Bound from Observed Behavior

Rationality Bound

Strategic Bound 1 2 3 ≥ 4 Total

1 9 – – – 9
2 3 13 – – 16
3 3 2 16 – 21
4 2 10 3 13 28

NC Rational 1

Table 4.2. Gap Between Rationality and Strategic Bounds

There are 80 subjects and thus 80 observations x = (x(1), x(2), x(3), x(4)). Table 4.1 shows

the identified strategic bounds. There are 6071 potential observations that could lead to a non-

classification: 5832 potential observations could lead to non-classification because they involve a

dominated strategy in the role of P1, and 249 potential observations could lead to non-classification

because they are inconsistent with our identifying assumptions. (Refer back to the discussion in

Section 3.3.) In the data, five observations are not classified because they involve a dominated

choice in the role of P1; these are labeled “NC Irrational” in Table 4.1. These five fall outside the

purview of our analysis. Our analysis thus focuses on the behavior of the remaining 75 subjects.

Of those subjects, 1 subject is not classified; this is labeled “NC Rational” in Table 4.1. We include

this subject in our analysis. In principle, the subject’s behavior is rational—the behavior is only

ruled out by the assumptions we have made about the players’ beliefs.

Refer to Table 4.1. More than 37% of the subjects are classified as having a strategic bound of

4 and 12% are classified as having a strategic bound of 1. Recall, we identify the strategic bound as

the minimum strategic bound consistent with the observed data. This has two implications. First,

subjects identified as having a strategic bound of 4 may in fact have a higher level of strategic

reasoning. (Given the nature of the 4-player ring game, we cannot distinguish a bound of four

from higher strategic bounds.) Second, subjects identified as having a strategic bound of 1 may

actually have a higher level of strategic reasoning. If so, their behavior would indicate a gap between

reasoning about rationality and strategic reasoning. (After all, subjects identified with a strategic

bound of 1 do not behave in accordance with “rationality and belief of rationality,” etc.)
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Table 4.2 provides information about the gap between the rationality and strategic bounds. If

there were no gap, then all subjects would fall along the diagonal. However, we do observe off-

diagonal behavior implying that there is a gap. In particular, there are 65 subjects with strategic

bound of at least 2 and, of those subjects, 23 are identified as having a gap between their strategic

and rationality bounds.

We point to two specific features. First, 47% of the subjects identified as having a low rationality

bound—i.e., a rationality bound of 1 or 2—have a higher strategic bound. (The same is not true

for those with a rationality bound of 3.) Second, the gap appears more pronounced for subjects

identified as having a higher strategic bound. In particular, 54% of the subject identified as having

a strategic bound of 4 have a rationality bound that is strictly less than 4.15 Put differently, only

46% of the subjects identified as having a strategic bound of 4 also have a rationality bound of

4. But, 76% (resp. 81%) of the subjects who have a strategic bound of 3 (resp. 2) also have a

rationality bound of 3 (resp. 2).

Table 4.3 shows the average payoffs that a subject with a given strategic bound could receive.

These are computed by pairing each subject’s observed behavior with the observed behavior of

every other subject. Thus, it is what the subject should expect to earn, if she has correct beliefs

about the behavior of the population. Subjects identified as having a strategic bound of 2, 3 or

4 can have a gap between their strategic and rationality bounds. Table 4.3 shows that such gap

subjects outperform their no gap counterparts.

Strategic Bound

1 2 3 4

No Gap 12.97 11.71 11.84 9.78

Gap - 12.52 13.04 12.05

Table 4.3. Average Payoffs

The fact that gap subjects outperform their no gap counterparts is of interest. As discussed,

bounds on reasoning about rationality are often interpreted as limits on the players’ sophistication—

e.g., limits on their ability to engage in interactive reasoning. However, such bounds may instead

reflect a deliberate decision to not believe other players are rational (or engage in reasoning about

rationality). The fact that the gap subjects outperform their no gap counterparts suggests that

subjects are capable of reasoning higher levels about rationality, but simply choose not to do so.

15Eight of those subjects play IU in the role of P1-P2-P4 and (b, b∗) in the role of P3. That behavior can, for instance,
be explained as a subject who, in each player role, assigns probability 3

4
: 1

4
to “other subjects are rational” vs.

“other subjects choose the action with the highest arithmetic mean.” Such first-order beliefs can be consistent with
identifying the subject as having a strategic bound of 4. Under such first-order beliefs, the subjects’ rationality
bound would be lower than our identified rationality bound of 2; in that case, the identified gap is smaller than the
subjects’ actual gap.
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5 The Population-Based Model

In Section 2, we pointed out that, if P2 assigns probability 4/5 to P1 playing the rational strategy

(a, c∗) and probability 1/5 to the strategic but irrational strategy (b, c∗), then P2’s best response

is to play the non-IU strategy (a, c∗). Note two features of this example. First, P2 was identified

as having a strategic bound that was higher than his rationality bound. Second, P2 had non-

degenerate beliefs about P1’s rationality.

In this section, we focus on subjects who have a gap between their rationality and strate-

gic bounds. Section 5.1 illustrates how such a subject’s beliefs about the strategies played can

be reinterpreted in terms of beliefs about rationality—even when such a subject is not playing

an IU strategy. Section 5.2 imposes discipline on those beliefs by studying, what we will call,

the Population-Based Model. Section 5.3 uses Selten’s measure of predictive success (Selten and

Krischker, 1982; Selten, 1991) to discuss how well the Population-Based Model explains the data.

In the course of doing so, we show that the best fitting model involves non-degenerate beliefs in

reasoning about rationality. (Theoretically inclined readers may prefer to skip Section 5.1.)

5.1 Reasoning About Rationality

Recall, to identify the rationality bound, we used the behavior in the role of Pi to distinguish a

subject who has a rationality bound of (i−1) from a subject who has a rationality bound of m ≥ i.
With this in mind, we begin by focusing on behavior in a single player role Pi: We focus on the

case where the subject has a rationality bound of m = i − 1 and a strategic bound of k ≥ i. We

argue that the behavior in the role of Pi is tied to how the subject reasons about rationality. This

will be an input for the Population-Based Model to follow.

Player Role P2 Suppose that we identify a subject as having a rationality bound of 1 and a

strategic bound of k ≥ 2. In that case, the subject plays some x(2) = (d, e∗) in the role of P2, where

x(2) is optimal under a 2-strategic belief but is not the IU strategy. For instance, in Section 2, we

pointed out that the strategy (a, c∗) is rational for P2 if she assigns probability 4/5 to P1 playing

the rational strategy (a, c∗) and probability 1/5 to the strategic but irrational strategy (b, c∗). If, in

fact, P2 holds this belief, then she assigns probability p2 = 4/5 to the event that “P1 is rational.”

More generally, the probability that P2 assigns to P1 playing the dominant strategy (a, c∗) is

the probability that P2 assigns to the event that “P1 is rational.” Thus, for any observed strategy

x(2) that is optimal under a 2-strategic belief, we can find the set of probabilities p2 so that x(2) is

a unique best response under some 2-strategic belief that assigns probability p2 to the event that

“P1 is rational.” These sets are given in Table 5.1. Notice, if x(2) is not the IU strategy then p2

cannot be 1.

Player Role P3 Next, consider a subject who is identified as having a rationality bound of 2

and a strategic bound of k ≥ 3. In that case, the subject plays some x(3) = (d, e∗) in the role of
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(a, a∗) (a,b∗) (a, c∗) (b, a∗) (b, c∗) (c, a∗)

Bounds
(

1
11 ,

62
133

) (
2
7 , 1
] (

2
5 ,

7
8

) [
0, 25
) [

0, 57
) [

0, 29
133

)
Table 5.1. Bounds on P2’s Belief p2 of Rationality Given Strategic Bound ≥ 2

P3 that is not the IU strategy, but is optimal under some belief Pr3 about P2’s behavior. Since we

have taken a broad view of strategic optimality, Pr3 can be any belief.

Suppose that we observe P3 play x(3) = (b, c∗). This behavior is a best response under a belief

Pr3 with Pr3(a, c∗) = 1. Referring to Table 5.1, this belief can be reconceptualized as a belief that

assigns probability p3 = 1 to “P2 is rational and assigns probability at least q2 to P1’s rationality,”

for any q2 < 7/8. But, it is also a best response to a belief Pr′3 with Pr′3(a, b∗) = Pr′3(c, c∗) = 1/2.

This belief can be reconceptualized as a belief that assigns probability p′3 = 1/2 to “P2 is rational

and assigns probability at least 1 to P1’s rationality.” (Of course, it can also be reconceptualized

as a belief that assigns probability p′3 = 1 to “P2 is rational and assigns probability at least 0 to

P1’s rationality.”)

This idea applies more generally. Any observed strategy x(3) = (d, e∗) is a unique best response

under a belief Pr3. Any such belief can be reconceptualized in terms of beliefs about rationality

(or, more precisely, beliefs about “reasoning about rationality”). To do so, say that an event is

q-believed if the event is assigned probability at least q. Then, the observed strategy can be viewed

as a best response given a belief that assigns probability p3 to

“P2 is rational and q2-believes that P1 is rational.”

As the examples highlight, the choice of a pair (p3, q2) will, quite generally, not be unique. Table

C.2 in Appendix C provides the pairs of (p3, q2) that rationalize each observation. Again, if the

observed behavior is not IU, then it cannot be the case that p3 = q2 = 1, i.e., there must be a

departure from full blown reasoning about rationality.

Player Role P4 Finally, consider a subject who is identified as having a rationality bound of 3

and a strategic bound of 4. In that case, the subject plays some x(4) = (d, e∗) in the role of P4 that

is not the IU strategy, but is optimal under some belief Pr4 about P3’s behavior. As above, such a

belief can be reconceptualized in terms of beliefs about rationality (or reasoning about rationality).

Specifically, it can now be reconceptualized as a belief that assigns probability p4 to

“P3 is rational and q3-believes that ‘P2 is rational and r2-believes rationality’ .”

The choice of a triple (p4, q3, r2) is not unique. Table C.3 in Appendix C presents the triples

(p4, q3, r2) that rationalize each strategy observed in the data. Again, if the observed behavior is

not IU, then it cannot be the case that p4 = q3 = r2 = 1, i.e., there must be a departure from full

blown reasoning about rationality.
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5.2 The Population-Based Model

Above we argued that a subject’s beliefs about the strategies played can be reconceptualized in

terms of beliefs about rationality (or beliefs about “reasoning about rationality”). For instance, if

a subject is identified as having a strategic bound of k = 4, the subject’s beliefs can be reconcep-

tualized as beliefs that satisfy the following P2-P3-P4 requirements:

P2 Requirement The subject assigns probability p2 to the event that “P1 is rational.”

P3 Requirement The subject assigns probability p3 to the event that “P2 is rational and q2-

believes that ‘P1 is rational.’ ”

P4 Requirement The subject assigns probability p4 to the event that “P3 is rational and q3-

believes that ‘P2 is rational and r2-believes rationality.’ ”

Thus, the subject’s behavior can be explained by a vector of six parameters (p4, q3, r2; p3, q2; p2).

Analogously, if the subject is identified as having a strategic bound of 3 (resp. 2), the subject’s

behavior can be explained by a vector (p3, q2; p2) (resp. (p2)) that satisfies the P2-P3 (resp. P2)

requirements. Moreover, if there is a gap between the subject’s rationality and strategic bounds,

then the associated vector is not the 1 vector.

The Population-Based Model (PB Model) imposes discipline on these vectors of beliefs,

by imposing two assumptions: Anonymity and Introspective Beliefs. Each of these assumptions

limit beliefs, by exploiting the fact that we observe behavior across player roles. The limitations

come in two forms. First, we can explain the behavior of subjects with a strategic bound 4 (resp. 3)

by three (resp. two) parameters instead of six (resp. three) parameters. Second, those three (resp.

two) parameters must satisfy certain restrictions.

Assumption 5.1 (Anonymity Assumption).

(i) A subject assigns probability p to the event “Pi is rational” if and only if she assigns probability

p to the event “Pj is rational.”

(ii) A subject assigns probability p to the event “Pi is rational and q-believes Pk is rational” if

and only if she assigns probability p to the event “Pj is rational and q-believes P` is rational.”

Anonymity says that, the subject assigns probability p to the event that “P1 is rational” if and only

if she assigns probability p to the event that “Pi is rational” for each i = 2, 3, 4. And, analogously,

for higher levels of reasoning. The idea is this: In the experiment, a subject does not observe who

she is playing against and, moreover, the pool of subjects is the same across player roles. As such,

the nature of reasoning about the rationality of opponents should not change across player roles.

To exemplify the power of the assumption, suppose we observe a subject play a non-IU strategy

x(2) = (b, a∗) in the role of P2 and an IU strategy x(4) = (a, c∗) in the role of P4. Because x(4) is the

IU strategy, one might hope to explain the subjects behavior by parameters (p4, q3, r2; p3, q2; p2) =

(1, 1, 1; p3, q2; p2): After all, playing IU in the role of P4 is consistent with a subject who plays a

best response given a belief that assigns probability p4 = 1 to

28



“P3 is rational and 1-believes that ‘P2 is rational and 1-believes rationality.’ ”

But, if that were the case, the subject also assigns probability p4 = 1 to “P3 is rational.” Anonymity

then requires that the subject also assigns probability p2 = 1 to the event that “P1 is rational.”

However, referring to Table 5.1, x(2) is only a best response to a belief that assigns probability

p2 ≤ 2/5 to P1’s rationality. Thus, Anonymity implies that p4 is also at most 2/5.

Assumption 5.2 (Introspective Beliefs Assumption).

(i) If a subject has a strategic bound of 3, then the subject satisfies the P2 and P3 Requirements

for some p2 = q2.

(ii) If a subject has a strategic bound of 4, then the subject satisfies the P2, P3, and P4 Require-

ments for some p2 = q2 = r2 and p3 = q3.

To understand what Introspective Beliefs delivers, consider a subject who has a strategic bound of

at least 3. Then, in the role of P2, she assigns probability p2 to the event that “P1 is rational.”

Introspective Beliefs requires that, in the role of P3, she acts as if she assigns probability p3 to the

event that “P2 is rational and p2-believes ‘P1 is rational.’ ” (As an example, suppose that, in the

role of P2, the subject assigns probability 1 to “P1 is rational,” and, so, plays the IU strategy. Then,

Introspective Beliefs requires that, in the role of P3, she acts as if she assigns p3 to the event that

“P2 is rational and 1-believes ‘P1 is rational.’ ”) Thus, the subject’s beliefs about the population’s

beliefs about “P1’s rationality” (i.e., q2) are determined by her own beliefs about “P1’s rationality”

(i.e., p2). Informally, her beliefs about the populations beliefs are determined by introspection.

The Introspective Beliefs assumption directly reduces the dimensionality of the beliefs: The

behavior of a strategic bound 4 subject can be described by some (α∗, β∗, γ∗), where α∗ = p2 =

q2 = r2, β
∗ = p3 = q3, and γ∗ = p4. Likewise, the behavior of a strategic bound 3 (resp. 2) subject

can be described by some (α∗, β∗) (resp. α∗), where α∗ = p2 = q2, and β∗ = q3 (resp. α∗ = p2).

The Anonymity assumption imposes discipline on these parameters.

Proposition 5.1. If a subject is identified as having a strategic bound k = 4 (resp. k = 3),

then the subject’s behavior can be characterized by parameters (α∗, β∗, γ∗) (resp. (α∗, β∗)), where

α∗ = p2 = q2 = r2, β∗ = p3 = q3, and γ∗ = p4 (resp. α∗ = p2 = q2 and β∗ = p3) satisfy the

P2-P3-P4 (resp. P2-P3) Requirements. Moreover, α∗ ≥ max{β∗, γ∗}.

5.3 The Best Fitting Population-Based Model

We now bring the PB Model to bear on the experimental data. The model will capture both

(i) subjects who have no gap between their strategic and rationality bounds, and (ii) subjects who

have a gap between their strategic and rationality bounds. We will describe the behavior of both

no gap subjects (i.e., i) and gap subjects (i.e., ii) using the language of types. Toward that end, a

Population-Based Model will consist of a set of types T = T (n) ∪ T (g), where T (n) is a set of no

gap types and T (g) is a set of gap types.
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There are four no gap types in the model, i.e., T (n) = {t(1), t(2), t(3), t(4)}. Type t(i) represents

the case where the strategic and rationality bounds are both i. For each j ≤ i, type t(i) is expected

to play the IU strategy in the role of Pj. For each j > i, type t(i) is expected to play a constant

strategy. (The set T (n) is the same set in every model.)

Each gap type will be described by a triple of parameters, which implicitly describes both the

strategic bound and how it reasons about rationality. A gap type that captures a strategic bound

of k = 4 (resp. k = 3) is characterized by a triple (α, β, γ) ∈ [0, 1]3 (resp. (α, β, cb) ∈ [0, 1]2×{cb})
with (α, β, γ) 6= (1, 1, 1) and α ≥ max{β, γ} (resp. (α, β, cb) 6= (1, 1, cb) and α ≥ β). A gap type

that captures a strategic bound of k = 2 is characterized by an (α, cb, cb) ∈ [0, 1)× {cb}2. Types

are expected to play in accordance with Proposition 5.1. (See Tables 5.1-C.2-C.3.)

Write T(g) for the set of all possible gap types. Observe that this set is uncountable. How-

ever, many types are essentially equivalent. For instance, the set of predicted strategies for type

(19/20, 19/20, 19/20) is the same as the set of predicted strategies for type (18/20, 18/20, 18/20). (Both

only contain the IU strategies.) With this, the types in T(g) can be partitioned into a finite number

of subsets, so that two types are in the same partition member if and only if they have the same

predicted set of strategies. With this in mind, we focus on models T = T (n) ∪ T (g), where T (g)

is a subset of the partition members in T(g). (Thus, T (g) is finite. Note, we informally describe a

gap type as a triple—e.g., (α, β, γ)—but formally represent a gap type as an equivalence class of

such triples. No confusion should result.)

We seek to find the “best fitting” PB Model. To talk about the fit of the model, we use Selten’s

measure of predictive success (Selten and Krischker, 1982; Selten, 1991). Predictive success is an

area-based method of trading off the accuracy of the model relative to the precision of the model.

The accuracy of the model is measured by the hit rate. Specifically, the Hit Rate of T is the

probability of observing a datapoint consistent with T . The precision of the model is measured by

the relative area. Specifically, the Relative Area of T is the proportion of outcomes consistent with

the model T . The Predictive Success of T, viz.

PS(T ) = Hit Rate of T − Area of T,

is the difference between the accuracy and the precision of the model. Appendix C.3 discusses how

this is computed in the data.

We seek a minimal set of types that maximizes the predictive success. That is, we choose

T ∗ = T ∗(n) ∪ T ∗(g) so that, for each model T : (i) PS(T ∗) ≥ PS(T ), and (ii) if PS(T ) = PS(T ∗)

then it is not the case that T ( T ∗. (Appendix C.3 discusses the minimality requirement.)

There is exactly one minimal model T ∗ that maximizes predictive success. Table 5.2 describes

the associated gap types.16 There are four such types: one of strategic bound of 2, one of strategic

bound 3, and two of strategic bound 4. The predictive success of that model is .843. This says that

the model does 84.3% better than uniformly drawing from the set of possible outcomes. To put

16Recall, a type represents a set of behaviorally equivalent probability parameters. Thus, types are represented by
subsets of intervals that satisfy α ≥ max{β, γ}. All elements of these intervals are behaviorally equivalent.
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SB 2 Type SB 3 Type SB 4 Type SB 4 Type

α [57 ,
7
8) [78 , 1] [78 , 1] [57 ,

7
8)

β cb [1562 ,
14
31) [78 , 1] [58 ,

5
6)

γ cb cb [13 ,
4
9 ] [59 ,

7
8 ]

Table 5.2. Model That Maximizes Predictive Success

this number in perspective, note that the predictive success of the model with only no gap types is

.644. Thus, gap types appear central to understanding the data.

5.4 The Nature of Beliefs

Refer to Table 5.2. Each of the gap types involve non-degenerate beliefs about rationality. For

instance, the gap type of strategic bound 2 is described as assigning probability α ∈ [57 ,
7
8) to the

event that “Pi is rational.” The gap type of of strategic bound 3 can be described as assigning

probability β ∈ [1562 ,
14
31) to “Pi is rational and believes P(i − 1) is rational.” Likewise, one of

the strategic bound 4 gap types has analogous non-degenerate beliefs—i.e., it can be described as

assigning probability γ ∈ [13 ,
4
9 ] to

“Pi is rational and believes ‘P(i− 1) is rational and believes P(i− 2) is rational’.”

The second gap type has non-degenerate beliefs at each level of reasoning—i.e., for the second gap

type, α, β, γ ∈ (0, 1).

With this framework in place, we are well suited to ask questions of how restrictions on the

model impacts the predictive success. We consider two increasingly more restrictive assumptions

on beliefs and show that, in each case, not much is lost (in terms of predictive success) by imposing

those restrictions. This suggests that the restrictions on beliefs are well-suited to explain the data.

First, the level-k and cognitive hierarchy models implicitly assume that all subjects of a given

bound can be described by a single type. This raises the question: Can we explain all gap subjects

of a given strategic bound k by a single gap type tk? The best fitting PB model (Table 5.2) already

describes gap subjects of strategic bound k ∈ {2, 3} by a single gap type tk. How much is lost if

we require the same at all strategic levels? We address this question by looking for the the model

that maximizes predictive success amongst all singleton models, i.e., models where T (g) contains

at most one type for each strategic bound k ∈ {2, 3, 4}. The model that best fits the data involves

T ∗s (g) = {t2,s, t3,s, t4,s}, where t2,s and t3,s correspond to Table 5.2 and t4,s is similar to the fourth

column in Table 5.2. (It involves α ∈ [57 ,
7
8), β ∈ [58 ,

5
6), and γ ∈ [14 ,

5
9 ].) The model also involves

non-degenerate beliefs at each level of reasoning and the predictive success of that model is .828.

Second, suppose that, in addition, we require that all gap types reason the same way about

rationality, i.e., irrespective of their strategic bound. So, for instance, if subjects of strategic

bound 4 are best described by (α∗, β∗, γ∗), then subjects of strategic bound 3 (resp. 2) are best

described by the same (α∗, β∗, cb) (resp. (α∗, cb, cb)). (This restricts the parameters of the model,
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i.e., going from a six parameter model—involving (α4, β4, γ4), (α3, β3, cb), and (α2, cb, cb)—to a

three parameter model (α∗, β∗, γ∗).) In this case, the best fitting model involves the same strategic

4 gap type t4,s. The predictive success of the model is .81.

Overall, these findings suggests that not much is lost—in terms of predictive success—by im-

posing these auxiliary assumptions on beliefs. Moreover, it suggests that our analysis and findings

are robust—that they do not depend on the flexibility of the PB model.

6 Deliberate Choice or Errors?

In Section 4, we argued that there is a gap between the strategic and rationality bounds. We

interpreted the off-diagonal entries in Table 4.2 as evidence of such a gap. To reach this conclusion,

we presumed that the off-diagonal entries were a result of deliberate choice on the part of subjects.

An alternate hypothesis is that those entries do not reflect deliberate choice, but instead are a

result of noise or errors. In this section, we argue that this alternate hypothesis is incorrect.

To do so, we will estimate a model of noisy choice, which we refer to as the Random Choice

model. In that model, the subjects’ rationality bounds are determined by their strategic bounds,

but subjects are prone to making mistakes.17 Thus, the off-diagonal entries in Table 4.2 only reflect

those mistakes. We then compare the Random Choice model to the best fitting PB model. To do so,

we take two complementary approaches. Both address the extent to which draws from the Random

Choice model can replicate the predictions of the best fitting PB model. The first approach does so

by looking at an adjusted measure of predictive success. The second approach does so by looking at

the distribution of draws predicted by the Random Choice model. These approaches suggest that

the data is better explained by a model of Deliberate Choice versus a model of Random Choice.

6.1 Random Choice Model

The Random Choice model takes as given that a subject’s rationality bound necessarily coincides

with her strategic bound. It interprets what appears to be a gap (between strategic reasoning and

reasoning about rationality) as an artifact of errors. For instance, consider a subject who actually

has a strategic bound of 3. Under the Random Choice model, the subject necessarily also has

a rationality bound of 3. Thus, modulo trembles, the subject would play according to iterated

dominance in the roles of P1, P2, and P3 and play a constant profile in the role of P4. In this

model, the subject who actually has a strategic bound of 3 can play the non-IU strategy (a, c∗)

in the role of P2—but only if she trembles. If Random Choice is correct, then our Deliberate

Choice setting (Sections 3-4) would misidentify this behavior by P2 as reflecting a gap between the

strategic and rationality bounds.

A Random Choice Model (RC Model) consists of a set of types, a prior on those types,

and error rates for each type. There are four types, viz. r1, r2, r3, r4; the probability of type rm is

17The Random Choice model is in the spirit of Kneeland’s (2015) approach. Kneeland assumes that the rationality
bound coincides with the strategic bound and departures from IU are due to mistakes. She does not model the
mistakes explicitly but, instead, classifies a subject’s rationality bound based on its closeness to the IU profile.
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πm. Type rm corresponds to a type who has both a rationality and strategic bound of m. Thus,

absent errors, that type is expected to play (i) the IU strategy in the role of P1,. . .,Pm, and (ii) a

constant strategy in any role Pi with i > m. More precisely, each type rm has an error rate εm. In

each player role, rm plays a predicted strategy with probability (1 − εm) and plays the remaining

action profiles with equal probability. For instance, consider type r3: In each of the roles P1-P2-P3,

r3 plays the IU strategy with probability (1 − ε3) and plays any of the eight remaining strategy

profiles with probability ε3
8 . In the role of P4, she plays each of the constant strategy profiles with

1−ε3
3 and the remaining six action profiles with probability ε3

6 . (See Appendix D.1 for a formal

description of this likelihood function.18)

r1 r2 r3 r4

π̂ .3645 .122 .096 .417

ε̂ .2777 0 0 .16

Table 6.1. Random Choice Model

We use maximum likelihood, to estimate a probability distribution, π̂ = (π̂1, π̂2, π̂3, π̂4), and

a vector of error rates, ε̂ = (ε̂1, ε̂2, ε̂3, ε̂4). This gives the probability distribution and error rates

that maximize the likelihood of observing the experimental dataset. The distribution and errors

are given in Table 6.1.

An important comment about the estimation: Because the Deliberate Choice model allows

for mistakes in the role of P1, subjects may well choose a dominated strategy in the role of P1.

This cannot occur in the Deliberate Choice setting studied earlier in this paper. For that reason,

earlier in the paper, we restricted attention to the data of subjects who do not choose a dominated

strategies. This led to a dataset with N = 75 observations. Because we want to give the Random

Error model the best chance of explaining the data (relative to the PB model studied earlier), here

and through the remainder of the paper, we look at the full dataset—including subjects who do

choose a dominated strategy. This gives a dataset of N = 80.

6.2 Adjusted Predictive Success

Is the best fitting PB model is better versus worse at predicting the data relative to a theory of

RC? To address this question, we first follow an approach proposed in Beatty and Crawford (2011)

and use an adjusted measure of predictive success.

To understand the approach, it will be useful to provide a reinterpretation of the original

measure. The area of the model can be viewed as the likelihood of seeing some model-prediction,

when we draw uniformly from all possible outcomes. When PS(T ) ≈ 0, the model T performs

about as well as uniform draws from the set of all possible outcomes. When PS(T ) > 0, the model

18A previous version of the paper studied a variant of the Random Choice model, in which the likelihood of observing
a tremble depends on the payoffs associated with that choice. The qualitative results of that analysis were quite
similar to the ones presented here.
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T predictions outperform the hypothesis of uniform draws from the set of all possible outcomes.

We are interested in the performance of the PB model relative to draws from the RC Model. So,

instead of drawing uniformly from all possible outcomes, we will draw outcomes from the RC model

in Table 6.1: The RC model specifies the likelihood of observing any outcome x. (This likelihood

depends on both the estimated error rate of each type rm, viz. ε̂m, and the estimated probability of

each type rm, viz. π̂m.) The adjusted area is the likelihood of observing some outcome consistent

with the PB model T . With this, we can compute the Adjusted Predictive Success of T, i.e.,

the difference between the hit rate of T and the adjusted area. (See Appendix D.2.)

We look at the Adjusted Predictive Success of the best fitting PB model (Table 5.2) relative to

the estimated RC model (Table 6.1).19 This Adjusted Predictive Success is .331. It suggests that

our model of deliberate choice—as represented by the PB model of Table 5.2—does more than 33%

better than the Random Choice model.

6.3 Simulating the RC Model

Next, we look at the distribution of behavior predicted by the RC model associated with Table 6.1.

We argue that it does not match the distribution observed in the data. To see this, we simulate

1000 datasets (of size N = 75), by taking draws from that RC model. Within each dataset

d = 1, . . . , 1000, we match each simulated observation to types of the PB model T ∗ (Table 5.2):

We assign simulated observations to either no-gap types or gap types. If a simulated observation

cannot be assigned to any type in T ∗, we refer to that as a non-classified (NC) observation.

0%

10%

20%

30%

40%

50%

SB=4=RB SB=4>RB SB=3=RB SB=3>RB SB=2=RB SB=2>RB SB=1=RB NC

Data Simulated Random Choice

Figure 6.1. Simulated Data with the Alternate Random Choice model

19The PB model in Table 5.2 also maximizes predictive success when we include all N = 80 subjects—not just the
75 rational subjects, as in Section 5. When N = 80, the benchmark no-gap types model has a predictive success of
.637, whereas the PB model of Table 5.2 has a predictive success of .785. (Likewise, the singleton and three type
models that maximize predictive success remain unchanged, when we go from 75 to 80 observations.)
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Each simulated dataset d generates a distribution of no gap types, gap types, and NC observa-

tions. Figure 6.1 depicts the mean distribution, i.e., taking the average across all 1000 simulations.

Importantly, the RC model fails to generate the gap between the strategic and rationality bounds

that are observed in the data. Moreover, the simulations suggest that we should observe far more

non-classified subjects, if the data was generated by the RC model. These striking differences

between the observed distribution and the simulated distributions give us confidence that the iden-

tified gap cannot be driven by noise.
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Appendix A Reasoning about Rationality vs. Level-k Reasoning

This paper focuses on bounded reasoning about rationality. In this Appendix, we relate that concept

to level-k reasoning and cognitive hierarchy reasoning. We begin by doing so in the abstract—i.e.,

for an arbitrary game—and then discuss how the concepts relate in Kneeland’s (2015) ring game.

Bounded Reasoning About Rationality The concept of bounded reasoning about rational-

ity has foundations in the epistemic game theory literature. We do not adopt a formal epis-

temic framework. Instead, we take “rationality and mth-order belief of rationality” to be (m +

1)-rationalizability (Bernheim, 1984; Pearce, 1984). This is consistent with results in Tan and

da Costa Werlang (1988) and Battigalli and Siniscalchi (2002).

Say that a strategy is an R1-strategy if it is rational, i.e., if it is a best response given some

belief about play. For m > 1,

A strategy is an Rm-strategy if it is a best response given some belief that assigns

probability one to the R(m− 1)-strategies.

A subject is an Rm reasoner if she chooses a strategy that is in Rm but not R(m + 1). This is

consistent with the definitions adopted in the main text.

Let us make two observations about Rm-strategies. First, if a strategy is Rm then it is also an

Rn-strategy for n ≤ m. Second, a strategy is Rm if and only if it survives m rounds of iterated

strong dominance, where iterated dominance is defined according to maximal simultaneous deletion.

(See Pearce, 1984.)

Level-k model This is the model introduced by Nagel (1995). The level-k literature begins

by specifying the behavior of so-called L0 reasoners. L0 reasoners are non-strategic. Thus, their

behavior is characterized by an L0-distribution. An L0-distribution for Ann (resp. Bob) is denoted

by p0a (resp. p0b). The idea is that an L1 reasoner plays a best response given a belief that the other

player is not-strategic. For each k ≥ 1:

A strategy is an Lk-strategy if it is a best response to an L(k − 1)-distribution.

A subject is an Lk reasoner if she chooses an Lk-strategy. A distribution is an Lk-distribution if

it has support in the Lk-strategies.

Because we seek to understand the concepts at an abstract level—with applicability to any

game—we have described the concept in its full generality. In practice, the concept of level-k

reasoning is applied to games (and L0 distributions) that satisfy the following property: For each

k ≥ 1, the Lk-distribution is degenerate. That is, there is a unique Lk-distribution and that

distribution assigns probability one to a particular strategy. (This property would necessarily hold

in a “generic” game, provided the L0-distributions are chosen judiciously.)

Papers that seek to identify level-k reasoning from observed behavior often restrict attention to

games (and L0 distributions) that satisfy an additional property: If sa is an Lk strategy, ra is an
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Ln strategy, and k 6= n, then sa 6= ra. That is, strategies played by Lk reasoners are distinct from

strategies played by all lower-order reasoners.

Cognitive Hierarchy Model Like level-k models, cognitive hierarchy models assume that play-

ers choose a best response to a belief that their opponent has a lower level. Unlike in level-k

models, players think that any lower level is possible. We follow the specification in Camerer,

Ho, and Chong (2004). As before, the starting point is distributions p0a and p0b that describe the

behavior of CH0 reasoners, who are non-strategic. Define the CH0-distribution for Ann, denoted

by q0a, to be equal to p0a. Likewise for Bob. Refer to the strategies in the support of q0a and q0b as

CH0-strategies.

To derive the distributions for higher level reasoners, fix a parameter τ > 0, and for ` = 0, 1, . . .,

let f(`; τ) be the Poisson density at ` (i.e., f(`; τ) = τ`e−τ/`!). The idea is that f(k; τ) is the “true”

fraction of players who reason up to level k. However, a player who reasons up to level k can

conceive only of players who reason up to a lower level. Thus, if Ann reasons up to level k, then

her belief over Bob’s reasoning levels is given by the truncated Poisson distribution which assigns

probability f(`;τ)/
∑k−1
m=0 f(m;τ) to Bob reasoning up to level ` ≤ k − 1 (and probability zero to levels

greater than k − 1). For k ≥ 1,

A CHk-strategy is a best response to a CH(k − 1)-distribution. If there are multiple

pure strategy best responses, a CHk-strategy is a mixture that assigns equal probability

to each best response.

A subject is a CHk reasoner if she plays a CHk-strategy. The CHk-strategy for Ann thus defines

a distribution pka over strategies. The CHk-distribution for Ann, denoted qka , is the distribution

over strategies if for ` ≤ k − 1, the fraction of CH` reasoners is given by the truncated Poisson

distribution and CH` reasoners play according to p`a. That is,

qka =
k−1∑
`=0

(
f(`; τ)∑k−1

m=0 f(m; τ)

)
p`a.

As in the case of level-k models, cognitive hierarchy models are often applied to games where CHk

reasoners have a unique best response.

Connections: Rk Reasoning versus Lk Reasoning An L1-strategy is rational and, so, an

R1-strategy. As a consequence, an L2-strategy is also an R2-strategy: It is a best response under

a 1-distribution and a 1-distribution assigns probability one to L1—and, so, R1—strategies. More

generally, for any k ≥ 1, an Lk-strategy is also an Rk-strategy. (In fact, if j ≥ k ≥ 1, then an

Lj-strategy is an Rk-strategy.) However, the converse does not hold. There may be strategies that

are Rk but not Lk-strategies. This is because level-k models fix an (exogenous) L0-distribution,

and there can be strategies that are not a best response to the exogenous L0 belief even if they are

a best response to some other belief.
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P1 P2 P3 P4

L1 (a, c∗) (a, a∗) (b, b∗) (a, a∗)

L2 (a, c∗) (a,b∗) (b, b∗) (a, a∗)

L3 (a, c∗) (a,b∗) (b, a∗) (a, a∗)

L4 (a, c∗) (a,b∗) (b, a∗) (a, c∗)

(a) Level-k Reasoning

P1 P2 P3 P4

CH1 (a, c∗) (a, a∗) (b,b∗) (a, a∗)

CH2 (a, c∗) (a, a∗) (a, a∗) (c, c∗)

CH3 (a, c∗) (a, a∗) (a, a∗) (c, c∗)

CH4 (a, c∗) (a, a∗) (a, a∗) (c, c∗)

(b) Cognitive Hierarchy Reasoning

Table A.1. Application to the Ring Game

Because an Lk-strategy is an Rk-strategy, Lk reasoning can only lead to behavior that is con-

sistent with degenerate beliefs about rationality. More precisely, an Lk strategy is consistent with

rationality and (k − 1)th-order belief of rationality. At first this degeneracy may not be obvious:

The 0-belief p0a (resp. p0b) often assigns positive probability to irrational strategies of Ann (resp.

Bob). When that is the case, the L1 reasoner can be interpreted as one that is rational but does

not believe rationality. With this, when Ann engages in L2 reasoning, she is rational and assigns

probability one to

“Bob is rational and assigns probability p to my rationality,”

for some p ∈ (0, 1). However, because L2 reasoning is also R2 reasoning, that behavior is also

consistent with Ann being rational and assigning probability one to

“Bob is rational and assigns probability 1 to my rationality.”

Connections: Rk Reasoning versus CHk Reasoning A CH1 is rational and, so, an R1-

strategy. However, a CH2-strategy need not be an R2-strategy. This is because a CH2-strategy

is optimal under a distribution that assigns positive probability to strategies in the support of

an L0 distribution and, in turn, p0b can assign positive probability to irrational strategies of Bob.

In fact, for any given τ , there exists some game in which the Rk-strategies are disjoint from the

CHk-strategies, for all k ≥ 2. As a consequence, CHk behavior may only be consistent with

non-degenerate beliefs about rationality.

Application to the Ring Game The typical L0-distribution (and CH0-distribution) is uniform

on the actions of the other player. Under this distribution, an L1 (and CH1) reasoner would play

(a, c∗) in the role of P1, (a, a∗) in the role of P2, (b, b∗) in the role of P3, and (a, a∗) in the role of

P4. Tables A.1a-A.1b give the behavior of the Lk and CHk reasoners (calculated using τ̂ = 1.61

which was the median τ found in Camerer, Ho, and Chong, 2004), in the roles of each of the players.

There are two things to take note of. First, if we were to observe the behavior of an Lk 6=L0

reasoner, we would conclude that the subject is an Rk reasoner, whose strategic bound is k. The

subjects whose behavior indicates a gap between the strategic and rationality bound are subjects

who would not be classified as Lk reasoners, for any k. Second, if we were to observe the behavior

of any CHk 6=CH0 reasoner, we would conclude that the subjects’ strategic bound is 1.
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Appendix B Identifying Strategic Bounds

Lemma B.1. Let Pi = P1,P3,P4. If Pi believes that P(i− 1) has a strategic bound of 1, then Pi

has a constant belief.

Proof. If Pi believes that P(i − 1) has a strategic bound of 1, then Pi believes that “P(i − 1) is

strategic and satisfies the Principle of Non-Strategic Reasoning.” It follows from the Principle of

Strategic Reasoning that Pi’s belief satisfies Pri(d, e∗) > 0 only if π(i−1)(d) = e∗. Since i − 1 6= 1,

it follows that Pi has a constant belief.

Lemma B.2. If P1 believes that P4 has a strategic bound of 2, then P1 has a constant belief.

Proof. Suppose that P1 believes that P4 has a strategic bound of 2. That is, P1 believes “P4

is 2-strategic and believes that P3 has a strategic bound of 1.” When P4 believes that “P3 has a

strategic bound of 1,” P4 has a constant belief (Lemma B.1). Thus, P1 believes “P4 is 2-strategic

and has a constant belief.” Thus, applying the Principle of Strategic Reasoning, P1 believes that

P4 plays a constant strategy. So, again, P1 has a constant belief.

Strategic
Bound

P1 P2 P3 P4 Strategy Subject

1 (a, c∗) (a, a∗) (a, a∗), (b,b∗), (c, c∗) (a, a∗) 3 7

1 (a, c∗) (a, a∗) (a, a∗), (b,b∗) (c, c∗) 2 1

1 (a, c∗) (b,b∗) (b,b∗) (a, a∗), (b,b∗), (c, c∗) 3 1

1 (a, c∗) (b,b∗) (c, c∗) (a, a∗), (b,b∗) 2 0

1 (a, c∗) (c, c∗) (a, a∗) (a, a∗) 1 0

1 (a, c∗) (c, c∗) (c, c∗) (a, a∗), (b,b∗) 2 0

2 (a, c∗)
(a,b∗), (a, c∗), (b, a∗),

(b, c∗), (c, a∗)
(a, a∗), (b,b∗), (c, c∗) (a, a∗), (b,b∗), (c, c∗) 45 16

3 (a, c∗)
(a, a∗), (a,b∗), (a, c∗),
(b, a∗), (b, c∗), (c, a∗)

(a,b∗), (a, c∗), (b, a∗),
(b, c∗), (c, a∗), (c,b∗)

(a, a∗), (b,b∗), (c, c∗) 108 21

4 (a, c∗)
(a, a∗), (a,b∗), (a, c∗),
(b, a∗), (b, c∗), (c, a∗)

(a, a∗), (a,b∗), (a, c∗),
(b, a∗), (b,b∗), (b, c∗),
(c, a∗), (c,b∗), (c, c∗),

(a,b∗), (a, c∗), (b, a∗),
(b, c∗), (c, a∗), (c,b∗)

324 28

NC 6071 1

Total 6561 75

Table B.1. Inferring the Strategic Bound from Observed Behavior
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Appendix C Section 5

C.1 Interval Calculations

Table C.1 re-expresses Table 5.1, in a way that easily permits computing the lower and upper

bounds of p2. Table C.2 uses Table C.1 to provide lower and upper bounds of p3 for every value of

q2. Finally, in the role of P4, we observe three strategies played: (a,b∗), (a, c∗), and (c, a∗). Table

C.3 uses Table C.2 to provide lower and upper bounds of p4 for those observations, given various

values of q3 and r2. (An expanded version of Table C.3 was used in calculations of the Predictive

Success; it is available by request.)

p2 Actions p2 Actions

[78 , 1] (a,b∗) [25 ,
2
5 ] (a, b∗), (b, c∗),(a, a∗)

[57 ,
7
8) (a,b∗), (a, c∗) (27 ,

2
5) (a,b∗), (b, c∗),(a, a∗),(b, a∗)

[ 62
133 ,

5
7) (a, b∗), (a, c∗), (b, c∗) [ 29

133 ,
2
7 ] (b, c∗),(a, a∗),(b, a∗)

(25 ,
62
133) (a,b∗), (a, c∗), (b, c∗),(a, a∗) ( 1

11 ,
29
133) (b, c∗),(a, a∗),(b, a∗),(c, a∗)

[0, 1
11 ] (b, c∗), (b, a∗),(c, a∗)

Table C.1. Assigning probability p2 to Rationality

(a, a∗) (a,b∗) (a, c∗) (b, a∗) (b,b∗) (b, c∗) (c, a∗) (c,b∗) (c, c∗)

q2 ∈ [78 , 1] [0, 58) [0, 1431) [0, 58) [0, 1] [0, 1431) [0, 78) [0, 1562) [0, 1562) [0, 1562)

q2 ∈ [57 ,
7
8) [0, 58) [0, 58) [0, 58) [0, 1] [0, 56) [0, 1] [0, 1562) [0, 1562) [0, 1562)

q2 ∈ [ 62
133 ,

5
7) [0, 67) [0, 56) [0, 1] [0, 1] [0, 56) [0, 1] [0, 817

2914) [0, 3548) [0, 78)

q2 ∈ [25 ,
62
133) [0, 231248) [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 817

2914) [0, 34) [0, 78)

q2 ∈ [ 29
133 ,

2
5) [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 3566) [0, 78) [0, 78)

q2 ∈ [0, 29
133) [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 215248) [0, 1] [0, 1]

Table C.2. P3: Probability p3 to “Rationality and q2-Belief of Rationality”
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(a,b∗) (a, c∗) (c, a∗)

r2 ∈ [78 , 1] q3 ∈ [78 , 1] [0, 13) [0, 1] [0, 49)

r2 ∈ [78 , 1] q3 ∈ [58 ,
7
8) [0, 1] [0, 1] [0, 59)

r2 ∈ [78 , 1] q3 ∈ [0, 58) [0, 1] [0, 1] [0, 1]

r2 ∈ [57 ,
7
8) q3 ∈ [56 , 1] [0, 1] [0, 1] [0, 59)

r2 ∈ [57 ,
7
8) q3 ∈ [0, 56) [0, 1] [0, 1] [0, 1]

r2 ∈ [0, 57) q3 ∈ [0, 1] [0, 1] [0, 1] [0, 1]

Table C.3. P4: Probability p4 to “Rationality and q3-Belief of ‘Rationality and r2-Belief of Rationality’ ”

C.2 Proposition 5.1

It will be convenient to introduce some notation: Write Ri for the event that a subject is rational

in the role of Pi. Write Bp
i (Ej) for the event that i assigns probability p to the event Ej . Write

B̃p
i (Ej) for the event that i assigns at least probability p to event Ej .

It will be convenient to record two properties of the standard belief operator.

Property 1 Bp
i (Ej) =⇒ B̃p

i (Ej).

Property 2 If B̃p
i (Ej) ∧Bq

i (Ej), then q ≥ p.

Property 1 says that if i assigns probability p to Ej then i also assigns at least probability p to Ej .

Property 2 says that if i assigns probability at least p to Ej and probability of exactly q to Ej ,

then q ≥ p.
Consider a subject who has a strategic bound of k = 3, 4. If k = 3, this subject is characterized

by a (p2; p3, q2) and, if k = 4, this subject is characterized by a (p2; p3, q2; p4, q3, r2). We fix these

characterizations in the lemma below. Proposition 5.1 follows immediately from that lemma.

Lemma C.1. Suppose Anonymity holds. If the subject has a strategic bound of k = 3, 4 then, for

each Pi with P3 ≤ Pi ≤ Pk, p2 ≥ pi.

Proof. Consider a subject who has a strategic bound of k = 3, 4. Notice that Bp2
2 (R1) and so, by

Anonymity, Bp2
i (Ri−1) holds in each player role P3 ≤ Pi ≤ Pk. At the same time, by Property 1,

B̃pi
i (Ri−1) holds. So applying Property 2, p2 ≥ pi.

C.3 Predictive Success

Recall, a Population-Based Model consists of a set of types T = T (n) ∪ T (g), where T (n) is a set

of no gap types and T (g) is a set of gap types. A no gap type t(i) is a type whose rationality and

strategic bound are both i. A gap type is characterized by a triple of parameters in ([0, 1]∪{cb})3.
(See the main text.)

For any given type t ∈ T , write S(t) for the set of strategy profiles that can be played by type

t. These are the predictions for type t. Note, S(t) ⊆ ({a,b, c} × {a∗, b∗, c∗})4. Write O(t) for
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the set of observed data points, viz. x = (x(1), x(2), x(3), x(4)), so that x ∈ S(t). These are the

observations consistent with type t.

The measure of Predictive Success of the model is the difference between the hit rate (i.e., the

probability of observing a datapoint consistent with the model) and the area (i.e., the proportion

of outcomes consistent with the model). Define the Hit Rate of T as

H(T ) =
|
⋃
t∈T O(t)|
N

,

where N is the number of datapoints. Define the Area of T as

A(T ) =
|
⋃
t∈T S(t)|
Z

,

where Z is the number of possible outcomes. The Predictive Success of T is given by

PS(T ) = H(T )−A(T ).

When we compute this measure, we take N = 75 and Z = 729. That is, we focus on the rational

observations (i.e., we take N = 75). In keeping with that, we only look at rational strategies when

we look the possible outcomes (i.e., we take Z = 729).

We choose a minimal model which maximizes predictive success. That is, we choose T ∗ so that

(i) for each model T , PS(T ∗) ≥ PS(T ), and

(ii) if PS(T ) = PS(T ∗) then ¬(T ( T ∗).

In the data, there is a single minimal model that maximizes predictive success.

To understand the import of the minimality criterion, fix a model T ∗ = T ∗(n) ∪ T ∗(g) that

maximizes predictive success. Suppose there is a type tk ∈ T ∗(g) in the model and a type uk 6∈ T ∗(g)

not in the model, so that S(uk) ⊆ S(tk) and H(tk) ⊆ H(uk). (Here we write H(t) for the hit rate

of a model that only has the type t, i.e., |O(t)|/N.) Then adding uk to T ∗(g) does not change the

model’s predictive success. We impose minimality so that we look for the smallest set of parameters

that explain the data.

This criterion points to a modeling assumption: We assume that the model includes both gap

and no gap types. An alternate would be to allow all types to be characterized by parameters

(α, β, γ) (resp. (α, β, cb) or (α, cb, cb)), with “no gap types” being the special case of (α, β, γ) =

(1, 1, 1) (resp. (α, β, cb) = (1, 1, cb) or (α, cb, cb) = (1, cb, cb)). Doing so does not change the

conclusions: The minimal set of gap types that maximizes predictive success in our model is also

the minimal set of types that maximizes predictive success in that model. To understand why,

consider the case of a strategic bound k = 4 and note O(1, 1, 1) = S(1, 1, 1) is a singleton that

contains the IU strategy. Moreover, for each type t4, O(1, 1, 1) ⊆ O(t4) and S(1, 1, 1) ⊆ S(t4).

Thus, a model with both (1, 1, 1) and type t4 has the same predictive success as a type with only
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type t4.
20 Under the alternate approach, there is a model with no gap types, which maximizes

predictive success. However that set of types is not minimal. Because we impose minimality, we

also explicitly include no gap types in the model.

Appendix D Section 6

The researcher observes an experimental dataset, corresponding to an observation for each subject

n = 1, . . . , N . An observation is an action profile for subject n, i.e., some xn = (xn(1), . . . , xn(4)),

where xn(i) ∈ {a,b, c} × {a∗,b∗, c∗} denotes the behavior in the role of Pi. The experimental

dataset is given by x = (xn)Nn=1.

Write xrat(i) for the IU strategy in the role of Pi. (So, xrat(1) is (a, c∗), x
rat(2) is (a,b∗),

etc.) Let η[xn, i] be an indicator for whether xn(i) and xrat(i) agree. So if xn(i) = xrat(i), then

η[xn, i] = 1 and if xn(i) 6= xrat(i), then η[xn, i] = 0. Let κ[xn, i] be an indicator for whether xn(i)

is a constant strategy. So, κ[xn, i] = 1 if xn(i) is a constant strategy and κ[xn, i] = 0 otherwise.

D.1 Random Choice Model

Write MRC = (TRC, π, ε) for a Random Choice (RC) model. It has three components: A set

of type TRC = {r1, r2, r3, r4}, a probability distribution on TRC, namely π = (π1, π2, π3, π4), and

type-specific trembles ε = (εm)4m=1 ∈ (0, 1)4. For a subject of type rm, the probability of observing

xn(i) is

p(xn(i)|rm, εm) =

(1− εm)η[x
n,i] ( εm

8

)(1−η[xn,i])
if i ≤ m(

1−εm
3

)κ[xn,i] ( εm
6

)(1−κ[xn,i])
if i ≥ m+ 1,

and the probability of observing xn is

p(xn|ε) =
4∏
i=1

p(xn(i)|rm, εm). (1)

To better understand what is involved, consider a subject who has a rationality and strategic

bound of m = 3. Then, modulo trembles, the subject plays the IU strategy in the role of P1-P2-P3

and a constant strategy in the role of P4. With this in mind, in the role of Pi=P1,P2,P3, we will

observe the IU strategy with probability (1 − εi). The RC model further assumes that trembles

are independent of the payoffs of the game. So, in the role of Pi=P1,P2,P3, we will observe any

non-IU strategy with probability εi
8 . Likewise, the RC model assumes that in the role of P4, each

constant strategy is equally likely. So, in the role of P4, we will observe each constant strategy with

probability (1−ε4)
3 and each non-constant strategy with probability ε4

6 . The RC model assumes that

these trembles are independent across player roles.

20An analogous argument applies to a subject whose strategic bound is 3. However, for a subject with a strategic
bound of 2, we need not have that O(1, cb, cb) ⊆ O(t2) and S(1, cb, cb) ⊆ S(t2). (This is because of the discipline
imposed on 2-strategic beliefs.) That said, this non-inclusion only holds for types t2 will negative predictive success.
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The likelihood of observing behavior xn in the model MRC is

L(xn | MRC) =
4∑

m=1

(πm × p(xn|ε)) .

And, the aggregate log-likelihood of observing the experimental dataset x = (xn)Nn=1 is

lnL∗(x | MRC) =

N∑
n=1

lnL(xn | MRC).

We choose M̂RC to maximize lnL∗(x | MRC). (Recall, when we do so, we include all—i.e., even

irrational—observations. Thus, N = 80.) Table 6.1 describes RC model that maximizes the log-

likelihood of observing the experimental dataset.

D.2 Adjusted Predictive Success

Let T ∗ be the PB model that maximizes predictive success (Table 5.2) and let M̂RC be the RC

model that maximizes the aggregate log-likelihood (Table 6.1). Note, T ∗ induces a set of predicted

outcomes, viz. O(T ∗) =
⋃
t∈T ∗ O(t). For each x ∈ O(T ∗), the likelihood of observing x if the data

is generated by M̂RC is given by L(x | M̂RC). The likelihood of observing some outcome predicted

by T ∗ is then

A(T ∗ | M̂RC) :=
∑

x∈O(T ∗)

L(x | M̂RC).

The Adjusted Predictive Success of T ∗ given M̂RC is

PS(T ∗ | M̂RC) = H(T ∗)−A(T ∗ | M̂RC).

When we compute the Adjusted Predictive Success we again include all 80 observations. (Refer to

Footnote 19.)
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