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Abstract

We consider a dynamic matching problem where players are repeatedly assigned

tasks and can choose whether to accept or reject them. Players prefer to avoid

certain tasks (“hot potatoes”) while other tasks give a positive payoff (“sweet pota-

toes”). There are frictions in the matching process in that players may not be

matched to desirable tasks even if one is available. Both under the optimal mecha-

nism and in decentralized settings, players may accept hot potatoes if this reduces

frictions in the matching process. We quantify the welfare loss due to matching

frictions and show that, unlike losses due to more conventional frictions, it does not

vanish when the cost of handling hot potatoes grows large.
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1 Introduction

With tasks and employers stressed out about traffic jams and unreliable transit

service, this political hot potato is back on Beacon Hill. – The Boston Globe,

7 Nov. 2019

Many matching processes involve frictions, with participants not being matched with

others even if such matches would generate value. For example, this is a driving force

behind the rise of matching platforms that facilitate the search for partners. The effects

of frictions can be aggravated when matching is dynamic if past decisions can increase or

reduce frictions in future periods. But despite this importance of frictions to matching,

the extant literature on dynamic matching largely abstracts away from matching frictions

by assuming that feasible matches that create value will be realized.1 This paper therefore

studies the economic implications of frictions on matching outcomes.

We study the impact of matching frictions in the context of handling hot potatoes. A

hot potato is an issue, problem, or person that nobody wants to deal with and is there-

fore often tossed around. An example are political hot potatoes such as the increases

in gas taxes referred to in the quote above (Chesto, 2019). Other examples of political

hot potatoes include pension reform in European countries (Minder, 2011), energy subsi-

dies in developing countries (The Economist, 2015), the refugee crisis in Europe (Rohac,

2016), property tax reform (Geringer-Sameth, 2019), exemptions from military service

for yeshiva students in Israel (The Economist, 2019b), an export ban on Huawei (Bin-

nie, 2015), regulating political advertising (The Economist, 2019a), and union disputes

(The Economist, 2012). Beyond the political realm, examples of games of hot potato

include employees responding to email queries that require effort to resolve by firing off

short (and not particularly helpful) messages in an effort to put the ball in a co-worker’s

court, avoiding liability for harassment claims (Wang, 2019), trading subprime mortgages

(Wall Street Journal, 2007), and avoiding admitting patients by referring them to others

(Newman, 2006).

These examples share two important features. First, there are indirect effects: If an

agent kicks the can down the road and does not resolve the problem, it may resurface in

the future. For example, if a politician does not tackle a thorny issue (say, so as not to

jeopardize his chances of being re-elected), it may come up in the future, as in the quote

above. Likewise, an employee who successfully avoids dealing with a problem today by

passing it onto a coworker may find the ball back in his court tomorrow.

The second key feature is that there are frictions in the matching process. For example,

while politicians can try to set the agenda, they are often unsuccessful because the issues

1Whether a match is feasible may of course depend on strategic considerations.
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they have to deal with are often driven by external shocks outside their control. So, even if

there are issues they would like to take on (say, to increase their popularity), they may be

unable to do so. Importantly, these frictions interact with the indirect effects: A decision

not to handle a particular hot potato can have important “downstream” consequences:

A politician who kicks the can down the road by not resolving a difficult issue today may

be forced to face it again when it resurfaces in a future period.

To capture these key features, we keep the baseline model deliberately simple and

abstract from features such as direct externalities, private information, or assortative

matching. We consider two long-lived players (say, politicians or coworkers). In each

period t = 0, 1, . . ., a new task arrives and is randomly assigned to one of the players. The

player who is assigned the task can decide to handle (“accept”) it or to reject it. There are

two types of tasks, referred to as hot potatoes and sweet potatoes. Rejecting a task gives

a stage payoff u, normalized to 0 (independent of the type of task). Accepting a sweet

potato gives the player a stage payoff us > 0 while accepting a hot potato gives the player

a stage payoff of uh < 0. Players aim to maximize their discounted sum of payoffs (with

common discount factor β ∈ (0, 1)). The type of tasks that are available, assignments of

tasks to players, and payoff parameters are common knowledge, and players’ decisions are

publicly observed.

Our first main result characterizes the outcome under decentralized matching where

players accept or reject tasks to maximize their discounted sum of payoffs (given the other

player’s strategy). That is, players play according to an equilibrium of the game. As is

standard, we focus on Markov perfect equilibria. A key strategic variable is the relative

cost ρ := |uh/us| of handling hot potatoes. If the relative cost of handling hot potatoes is

high, then, under decentralized matching, no player accepts the potatoes. If the relative

cost of hot potatoes is low, then players accept new hot potatoes (i.e., hot potatoes that

have just become available) but not old ones (i.e., hot potatoes that arrived in a previous

period). Crucially, there is also an intermediate range of costs where there are multiple

possible outcomes under decentralized matching: There is a Markov perfect equilibrium

in which both players accept new hot potatoes as well as a Markov perfect equilibrium in

which both players reject hot potatoes.2

So, under decentralized matching, players may decide to accept hot potatoes even

though they dislike them. The intuition is that hot potatoes, when not dealt with, may

resurface the next period. This aggravates frictions in the matching process: it reduces

the chance that players are matched with a desirable task in the next period. This gives

players an incentive to accept the hot potatoes even if that imposes a direct cost on them.

2In addition, there is also a mixed Markov perfect equilibrium where new hot potatoes are accepted

with a probability strictly between 0 and 1.
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However, taken by itself, this may not be enough: For intermediate levels of cost, the

prospect of potentially facing a more attractive set of tasks tomorrow is not sufficient for

a player to accept the hot potato today if the other does not accept any hot potatoes.

However, when the other player does accept hot potatoes, then it is optimal for the player

to do the same. So, there are strategic complementarities. Strategic complementarities

arise through indirect effects on the matching process: When the other player also accepts

hot potatoes, then accepting a hot potato today improves the set of available tasks not

only tomorrow but also in future periods. This gives rise to a coordination problem, and

therefore to multiplicity.

We next consider the optimal matching protocol when the designer can determine

players’ acceptance decisions but cannot eliminate the matching frictions directly. Under

the optimal matching protocol, players accept hot potatoes for a larger range of cost pa-

rameters. In particular, when there are strategic complementarities, the optimal matching

protocol selects the outcome where all players accept (new) hot potatoes. In addition,

there is a range of payoff parameters where players always reject new hot potatoes under

decentralized matching but accept them under the optimal matching protocol. Intuitively,

there are externalities: both players benefit when a player eliminates the matching fric-

tions by handling hot potatoes. So, under decentralized matching, there are two types

of inefficiencies: for intermediate levels of cost, players may fail to coordinate on the

Pareto dominant equilibrium (“coordination failure”) and for higher levels of cost, they

face a social dilemma. The optimal mechanism eliminates both types of inefficiencies and

increases welfare.

However, because the optimal mechanism does not eliminate matching frictions, we

also evaluate the welfare loss relative to the no-friction benchmark where players are

matched to desirable tasks whenever they become available (while never being matched

to undesirable tasks). While the welfare loss due to decentralization vanishes when the

cost of handling hot potatoes grows large, this is not the case for the welfare loss due to

matching frictions. In fact, it is maximized when the cost of handling hot potatoes is large.

The intuition is that inefficiencies due to matching frictions are not due to traditional

external effects (which disappear once the private cost dwarfs any social benefit) but

instead are driven by indirect effects: When the cost of handling hot potatoes is high,

players do not handle them (either in the decentralized or the optimal case) and this

aggravates matching frictions.

This paper is organized follows. After a brief literature review, the baseline model is

presented in Section 2. Section 3 presents the main results. Section ?? considers variants

and extensions of the benchmark model, and Section ?? concludes. Proofs are in the

appendix.

4



1.1 Related literature

Our work contributes to the emerging literature on dynamic matching (e.g., Ünver, 2010;

Baccara et al., 2016; Loertscher et al., 2016; Anderson et al., 2017; Doval and Szentes,

2018; Akbarpour et al., 2020).3 The key tradeoff in this literature – clearing the market

now or clearing it later to obtain better matches – is reminiscent of the problem of handling

a hot potato now or “kicking the can down the road.” However, a crucial distinction is

that this literature abstracts from the matching frictions that drive our results. This

leads to different conclusions. In the existing literature, thick markets generally improve

matching outcomes (as there are more high quality matches available). By contrast, in

our setting thickness generally impedes matching (as there are also more low quality

matches available) consistent with empirical evidence that thicker markets have lower

matching rates due to search frictions (Li and Netessine, 2020).4 The central importance

of matching frictions relates our paper to the literature on search and matching (Burdett

and Coles, 1997; Eeckhout, 1999); also see the survey by Rogerson et al. (2005). However,

because this literature focuses on two-sided matching problems, the welfare implications

are different.5

By studying matching in the presence of frictions, our work contributes to the growing

literature at the intersection of matching and market design on the one hand and search

and matching theory on the other (Chade et al., 2017).6 As in this literature, indirect

effects play a central role in our work: If a player accepts a task then this has an indirect

effect on the other player even if the two players do not interact directly, much like in

the existing literature a high type taking a low productivity job can affect the payoff to

a low ability type. Unlike much of this literature, it studies the wedge between optimal

and decentralized matching outcomes and how it depends on key parameters.

Finally, our paper contributes to the literature on stochastic games as the game is a

stochastic game where a player’s decision whether or not to accept a task today affects

the stage game played in the future. Stochastic games were introduced by Shapley (1953)

in his seminal work. The literature on stochastic games typically deals general problems

3Also see the literature on optimal matching algorithms; e.g., Ashlagi et al. (2018, 2019, 2020) and

Hu and Zhou (2018).
4Our paper is also distinct from the literature on waiting-list mechanisms (Su and Zenios, 2004, 2005,

2006; Leshno, 2015; Schummer, 2016; Bloch and Cantala, 2017; Thakral, 2019). The key distinction is

that, in these models, the availability of undesirable tasks does not make it harder to obtain desirable

tasks. These models are therefore unable to capture the key friction considered here.
5Specifically, if there are multiple equilibria for our model, they can be Pareto ranked (Proposition

3.1. This is generally not the case for the search and matching literature (Burdett and Coles, 1997).
6There is also a recent literature on matching platforms, primarily outside of economics; see, e.g.,

Kanoria and Saban (2017), Bimpikis et al. (2019), and Arnosti et al. (2020). The issues considered in

this literature are largely orthogonal to the questions studied here.
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such as the existence of equilibria or characterizing the value (see, e.g., Neyman et al.,

2003). By contrast, we provide a full characterization of the Markov perfect equilibria

for a particular class of games, and use this to study decentralized and optimal matching

protocols.

2 Model

We start by describing the benchmark model. Section ?? considers variants and extensions

of the model. Time is discrete and indexed by t = 0, 1, 2, . . .. There are two long-lived

players, labeled by i ∈ {1, 2}. Each period, a new task arrives. Each task is either a hot

potato or a sweet potato, where the probability that the task is a sweet potato equals

γ ∈ (0, 1) (independently across tasks and periods). Tasks are short-lived: Each task

remains available for two periods.7 In each period, one of the players is matched to one of

the available tasks. Matching is uniform and random. That is, in any period t, each player

i ∈ {1, 2} has probability 1
2

to be matched to one of the available tasks; and all tasks have

the same probability of being matched to a player. Once a task is matched to a player,

the player decides whether to accept the task or to reject it. The stage payoff (reward),

denoted rti , to a player i ∈ {1, 2} equals 0 if it does not accept a task, us > 0 if it accepts

a sweet potato, and uh < 0 if it accepts a hot potato.8 Players have a common discount

factor β ∈ (0, 1). There is no incomplete information: All payoff-relevant parameters (i.e.,

us, uh, β, γ) are commonly known and actions are publicly observed.

Notice that there are no direct externalities: the stage payoff to a player who is not

matched to a task is 0 regardless of the action of the other players. However, there are

indirect effects: Because each player’s decision whether to accept a task affects the set of

tasks that are available in future periods, current actions affect future payoffs. Thus, the

game is a stochastic game.

3 Results

3.1 Decentralized matching

Our first main result characterizes the outcome when matching is decentralized. Under

decentralized matching, players choose whether to accept or reject a task with the aim of

7This assumption is for simplicity. It significantly reduces the number of payoff-relevant states; ex-

tending the number of states does not produce substantially new insights.
8So, the stage payoff of accepting a task does not depend on how many periods the task has been

available. This is not critical for our results: The main rationale is to emphasize that the key dimension

on which tasks differ is whether they give a positive or negative stage payoff.
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maximizing their discounted sum of payoffs given the other player’s strategy.

Some more definitions will be helpful. Players’ decisions whether or not to accept

depends a task may depend on the available tasks. Because tasks that are not accepted

(either because they are rejected or are not assigned to a player) remain available for two

periods, there are four types of tasks: new sweet potatoes (n, s); new hot potatoes (n, h);

old sweet potatoes (o, s); and old hot potatoes (o, h). Let T := {(n, s), (n, h), (o, s), (o, h)}
be the set of types. Then, M := T ×{1, 2} is the set of possible matches (between players

and task types) in a given period. For i ∈ {1, 2}, let Mi := T × {i} be the set of matches

that involve player i. A state specifies the match (i.e., which player is matched to a task

and what the type of this task is) as well as whether another task is available, and, if so,

what the type of this other task is. That is, let T ∗ := T ∪ {∅}. Then, a state is a tuple

(τ , i, τ ′) ∈ M × T ∗. The interpretation is that, if the state is (τ , i, τ ′), then player i is

matched to a task of type τ , and τ ′ is the type of the other task that is available if such

a task exists, and τ ′ = ∅ otherwise. An outcome is state together with an action chosen

in that state, i.e., an outcome is of the form (τ , i, a, τ ′) ∈ M × {0, 1} × T ∗. Denote the

set of outcomes in a given period by H̃. So, for t > 0, H̃ t is the set of all sequences of t

outcomes. Let H̃0 be the null set. Then, a (behavioral) strategy for player i ∈ {1, 2} is a

function

σi :
∞⋃
t=0

(H̃ t−1 ×Mi × T ∗) −→ [0, 1].

The interpretation is that, for h̃t−1 ∈ H̃ t−1, (τ , i) ∈ Mi, and τ ′ ∈ T ∗, σ∗i (h̃∗,t−1, τ , i, τ ′) is

the probability that player i accepts a task of type τ following history h̃∗,t−1 if i is matched

to a task of type τ in t and the other available task is of type τ ′ ∈ T if such a task exists and

τ ′ = ∅ otherwise. Let Σi be the set of all strategies for player i. As is common, we focus

on stationary Markov strategies, that is, strategies that do not depend on the time period

or on the entire history of the game, but only on the state. Formally, a strategy σi for

player i ∈ {1, 2} is stationary Markov if there exists a function pi : Mi × T ∗ → [0, 1] such

that σi(h̃
t−1,mi, τ

′) = pi(mi, τ
′) for every time period t = 0, 1, 2, . . ., history h̃t−1 ∈ H̃ t−1,

match mi ∈Mi, and τ ′ ∈ T ∗.
We next define Markov perfect equilibrium. Given any profile (σ1, σ2) ∈ Σ1 × Σ2 of

strategies and the probability γ ∈ (0, 1) that a newly arrived task is a sweet potato, let

Ui(σi, σ−i) = E

[
∞∑
t=0

βt rti

]

be player i’s expected discounted sum of payoffs, where E[·] is the expectation operator

induced by the strategies (σ1, σ2) and the probability γ.
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Definition 3.1. [Markov Perfect Equilibrium] A Markov Perfect equilibrium is a

pair of strategies (σ∗1, σ
∗
2) ∈ Σ1 × Σ2 such that for each player i ∈ {1, 2}, σ∗i is stationary

Markov and there is no profitable deviation, i.e.,

Ui(σ
∗
i , σ

∗
i−) ≥ Ui(σi, σ

∗
−i) for all σi ∈ Σi.

By standard arguments, a Markov perfect equilibrium exists (e.g., Fudenberg and

Tirole, 1991, Ch. 13).

To state our characterization result for decentralized matching, we fix a discount factor

β ∈ (0, 1), probability γ ∈ (0, 1) that the task is a sweet potato, and payoff parameters

us > 0 and uh < 0. We define ρ := |uh/us| to be the relative cost of accepting a hot

potato. Also, define:

ρ1 :=
1
4
βγ(1− 1

2
β)

1− 1
2
βγ

; ρ2 :=
1
4
βγ(1− 1

2
β)

1− 1
4
β − 1

4
βγ
.

Note that 0 < ρ1 < ρ2 < 1. Then:

Proposition 3.1. [Decentralized Matching] In every Markov perfect equilibrium, old

hot potatoes are rejected. Sweet potatoes (new or old) are always accepted (conditional on

being matched to a player). Moreover,

(i) if ρ < ρ1, then players accept new hot potatoes in Markov perfect equilibrium;

(ii) if ρ > ρ2, then players reject new hot potatoes in Markov perfect equilibrium;

(iii) if ρ1 < ρ < ρ2, then there are three Markov perfect equilibria. In one equilibrium,

players accept new hot potatoes. In the second, players reject new hot potatoes.

There is also a mixed equilibrium where players accept new hot potatoes with prob-

ability q(β, γ, us, uh) ∈ (0, 1);

(iv) in the knife-edge cases ρ = ρ1 and ρ = ρ2, there is a continuum of Markov perfect

equilibria. In each equilibrium, one player accepts new hot potatoes with probability

0 or 1, while the other player accepts new hot potatoes with a probability strictly

between 0 and 1.

Proposition 3.1 characterizes the outcomes under decentralized matching where players

choose their strategies to maximize their discounted sum of payoffs (taking the strategy of

the other player as given). Under decentralized matching, sweet potatoes, both new and

old, are accepted. This is intuitive: Handling sweet potatoes is always attractive (us > 0).

Another feature is that old hot potatoes are always rejected. This is also intuitive: There

is no reason to accept old hot potatoes because handling hot potatoes is costly (uh < 0)
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and old tasks will cease to be available in the next period regardless of whether a player

accepts them or not. So, a player’s decision whether or not to accept an old hot potato

has no impact on which tasks are available in the future. Hence, there is no incentive for

players to accept tasks they do not want. Interestingly, players are willing to accept new

hot potatoes whenever the cost of handling them is sufficiently small (ρ ≤ ρ2). There are

two cases. First, when the cost of handling hot potatoes is sufficiently small (ρ < ρ1),

then accepting new hot potatoes is the best response for a player regardless of whether the

other player accepts or rejects them; hence, in this case, there is a unique Markov perfect

equilibrium, and in this equilibrium, both players accept new hot potatoes. Second, for

intermediate levels of cost (ρ ∈ [ρ1, ρ2]), players’ best response depends on the other’s

strategy: Accepting new hot potatoes is a best response for a player if he believes that

the other player accepts them, but not otherwise. Hence, in this case, there are two pure

Markov perfect equilibria, one in which players accept new hot potatoes and one in which

they reject them. The intuition for why players may wish to accept (new) hot potatoes

is that it allows them to eliminate matching frictions, which take the form of players not

being matched to sweet potatoes. There are two effects. The first effect is a direct effect:

If a given player, say i, rejects a (new) hot potato, then this player is less likely to be

matched to a sweet potato in the next period (as he might be matched with the hot

potato again). If the relative cost of handling hot potatoes is sufficiently low (ρ < ρ1),

this makes it optimal for players to accept (new) hot potatoes even if the other player

does not do so. There is also an indirect effect that operates through the actions of the

other player: If a given player, say i, rejects a (new) hot potato in a given period t, then

the other player, say j 6= i, is less likely to be matched to a new hot potato in t + 1

(as this other player might be matched with the old hot potato left over from period t).

Now, if j does not accept new hot potatoes, then it does not matter from i’s perspective

whether j is matched with an old or a new hot potato. Either way, there will be an old

hot potato available in t+ 2. But if j does accept new hot potatoes, then, if j is matched

with a new hot potato, then no old hot potatoes will be available in t+ 2. This increases

the chances that i is matched with a sweet potato in t+ 2 (should a sweet potato become

available). Thus, if player i rejects a new hot potato in period t, then he is less likely to

be matched to a sweet potato in period t + 2. But, this is only true if the other player

accepts new hot potatoes. This means there are strategic complementarities: If a player

accepts new hot potatoes, then the other player has a stronger incentive to do the same.

For intermediate levels of costs, this gives rise to equilibrium multiplicity.

One immediate implication of Proposition 3.1 is that players are more willing to accept

hot potatoes when they are patient and when the probability that a new task is a sweet

potato is high:
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Corollary 3.1. [Comparative Statics] Let us, uh, β, γ be as before. Then,

(a) For β′ < β, if there is a Markov perfect equilibrium in which a player, say i, accepts

new hot potatoes (with positive probability) when the discount factor is β′, then

there is a Markov perfect equilibrium in which i accepts new hot potatoes (with the

same probability) when the discount factor is β (assuming that the other parameters

us, uh, γ are held fixed).

(b) For γ′ < γ, if there is a Markov perfect equilibrium in which a player, say i, accepts

new hot potatoes (with positive probability) when the probability of sweet potatoes is

γ′, then there is a Markov perfect equilibrium in which i accepts new hot potatoes

(with the same probability) when the probability of sweet potatoes is γ (assuming

that the other parameters us, uh, β are held fixed).

Corollary 3.1 follows directly from the observation that the thresholds ρ1 and ρ2 are

strictly increasing in β and γ. The result is intuitive: If players are more patient and

are more likely to encounter sweet potatoes, then it becomes more important for them to

eliminate matching frictions, even if it comes at a short-run cost.

3.2 Optimal matching protocol

We next consider the optimal matching protocol when the designer can only determine

players’ acceptance decisions but cannot eliminate the matching frictions (i.e., tasks are

randomly assigned to agents). A matching protocol or policy is a pair σ = (σ1, σ2) of

strategies. A policy is optimal if it maximizes the sum of discounted aggregate payoff,

i.e., σ∗∗ is optimal if it maximizes

E

[
∞∑
t=0

βt(rt1 + rt2)

]
where the expectation is again taken over outcomes given the policy σ∗∗ and the proba-

bility γ that a task is a sweet potato. Define

ρ∗ :=
1
4
βγ(2− β(1− γ)

1− 1
2
βγ

.

Note that ρ2 < ρ∗. Then:

Proposition 3.2. [Optimal Matching] Under any optimal policy, old hot potatoes are

rejected. Sweet potatoes (new or old) are always accepted (conditional on being matched to

a player). Moreover, new hot potatoes are accepted (with probability 1) if ρ < ρ∗ whereas

they are rejected if ρ > ρ∗. In the knife-edge case ρ = ρ∗, players either accept or reject

new hot potatoes.
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ρ∗

Optimal matching

Accept

Reject

ρ

V
No friction

ρ2ρ1

(a)

ρ∗

Accept

Reject

ρ

V
No friction

ρ1 ρ2

Pareto superior MPE

(b)

ρ∗

Accept

Reject

ρ

V
No friction

ρ1 ρ2

Pareto inferior MPE

(c)

Figure 1: The discounted sum of expected aggregate payoff under (a) the optimal match-

ing protocol; (b) the Pareto-superior Markov perfect equilibrium; and (c) the Pareto-

inferior Markov perfect equilibrium, all relative to the no-friction benchmark.
11



Proposition 3.2 shows that, as under decentralized matching, players accept hot pota-

toes when the cost of handling them is sufficiently small, and reject them otherwise.

However, under the optimal matching policy, players accept new hot potatoes for a larger

range of parameters compared to the decentralized case (ρ∗ > ρ2). To understand the

differences between the optimal matching case in Proposition 3.2 and the decentralized

case in Proposition 3.1, consider Figure 1. Figure 1 plots the discounted sum of expected

aggregate payoffs as a function of ρ = |uh/us| (for fixed us). Figure 1(a) shows the dis-

counted sum Vσ∗∗(us, uh, β, γ) of expected aggregate payoffs under the optimal matching

policy, and Figures 1(b) and (c) give the discounted sum Vσ∗(us, uh, β, γ) of expected

aggregate payoffs under decentralized matching for the Pareto-superior and the Pareto-

inferior Markov perfect equilibrium, respectively. In each case, players accept new hot

potatoes whenever ρ is sufficiently small and reject them otherwise. The discounted sum

of expected aggregate payoffs when players accept sweet potatoes and new hot potatoes

but reject old hot potatoes is the dashed line labeled “Accept”, while the discounted sum

of expected aggregate payoffs when players accept sweet potatoes but reject hot potatoes

(old or new) is given by the dashed line in each panel labeled “Reject. ” Comparing panel

(a) to panels (b)–(c) shows that there are two types of inefficiencies under decentralized

matching relative to the optimal matching case. First, for higher costs (ρ ∈ (ρ2, ρ∗)),

there is a social dilemma: Because players do not internalize the benefit of accepting

new hot potatoes for other players, they may reject new hot potatoes under decentralized

matching even when they accept them under the optimal matching protocol. This social

dilemma arises despite the fact that there are no direct external effects on payoffs. Second,

for intermediate costs (ρ ∈ (ρ1, ρ2)), there can be coordination failure under decentralized

matching: Players may fail to select the Pareto-superior equilibrium. Together, these two

effects imply that players’ payoffs under decentralized matching is significantly below the

payoffs under the optimal matching policy whenever the cost of accepting hot potatoes is

not too small (ρ > ρ1).

We can also characterize the inefficiency due to matching frictions by comparing the

outcome under the optimal matching policy to the no-friction benchmark where the de-

signer removes any hot potatoes and matches players to any sweet potato that becomes

available. The discounted sum of expected aggregate payoff under this no-friction bench-

mark is

Vno friction(us, uh, β, γ) =
γus

1− β ,

independent of ρ (for given us). This is the dash-dotted line at the top of each panel in Fig-

ure 1. Figure 1(a) reveals that the inefficiencies caused by matching frictions are substan-

tial: Even though the optimal matching policies ensures that any externalities are internal-

ized and that there is no coordination failure, the frictions inherent in the matching process
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make that aggregate payoffs fall short of the no-friction benchmark whenever accepting

hot potatoes is costly (Vσ∗∗(us, uh, β, γ) < Vno friction(us, uh, β, γ) whenever ρ > 0). More-

over, while the difference between the decentralized and optimal matching case vanishes

when the cost of handling hot potatoes grows large (Vσ∗∗(us, uh, β, γ) = Vσ∗(us, uh, β, γ)

for ρ > ρ2), this is not the case for the difference between the optimal matching case and

the no-friction benchmark; in fact, the difference Vno friction(us, uh, β, γ)−Vσ∗∗(us, uh, β, γ)

is maximized for ρ > ρ2. Thus, unlike inefficiencies caused by external effects or coor-

dination failure, inefficiencies due to matching frictions remain large even when the cost

of accepting hot potatoes is large. Panels (b) and (c) of Figure 1 demonstrate that the

combination of inefficiencies due to matching frictions, externalities (panel (b)), and co-

ordination failure (panel (c)) means that players’ payoffs under decentralized matching

can be significantly below the no-friction benchmark whenever the cost of handling hot

potatoes is not too low (ρ > ρ1).

Appendix A Appendix

A.1 Simplifying the state space

Despite the simplicity of the model, the state space is quite extensive (it has 20 states).

This complicates the calculations. In this appendix we therefore show that it is without

loss of generality to view a player’s (stationary Markov) strategy (in the case of decen-

tralized matching) or a policy (in the case of optimal matching) as a function that maps

the type of the task that a player is matched to into a (mixed) action for that player.

That is, for the purpose of analyzing Markov perfect equilibria or for characterizing the

optimal matching protocol, it is without loss of generality to ignore other features of the

state, in particular, whether there is another task available, and, if so, what its type is.

In addition, we show that, for the purposes of calculating the continuation payoffs, it is

possible to work with a “reduced state space” (containing only 6 “reduced states”) that

does not specify which player is matched to which task. This will simplify the analyses by

significantly reducing the set of strategies and policies that need to be considered. Since

the arguments for the decentralized and optimal matching case are somewhat different

(though closely related), we treat each case separately.

We first show that, for the purposes of analyzing the Markov perfect equilibria, it is

without loss of generality to ignore any feature of a state (τ , i, τ ′) except the match (τ , i).

Some more definitions will be helpful. A reduced outcome in a given period is a triple

(τ , i, a), with (τ , i) ∈ M and a ∈ {0, 1}, where (τ , i, 0) means that player i was matched

to but rejected a task of type τ ∈ T in that period while (τ , i, 1) means that player i was

13



matched to and accepted a task of type τ . (That is, the difference between an outcome as

defined in the main text and a reduced outcome as defined here is that the former specifies

whether another task is available, and, if so, what its type is, whereas the latter does not.)

Denote the set of possible reduced outcomes by H̃− := M × {0, 1}, and for t > 0, let

(H̃−)t be the set of all “reduced” t-histories (i.e., a sequence of t reduced outcomes); also,

let (H̃−)0 be the null set. Then, a reduced (behavioral) strategy for player i ∈ {1, 2} is a

function

σ−i :
∞⋃
t=0

(
(H̃−)t−1 ×Mi

)
−→ [0, 1].

The interpretation is again that, for h̃−,t−1 ∈ (H̃−)t−1 and (τ , i) ∈ Mi, σi(h̃
−,t−1, i, τ)

is the probability that player i accepts a task of type τ following the reduced history

h̃−,t−1 (conditional on i being matched to a task of type τ). Let Σ−i be the set of all

reduced strategies for player i. Clearly, the set of strategies strictly includes the set of

reduced strategies. A reduced strategy σi for player i ∈ {1, 2} is stationary Markov if

there exists a function pi : Mi → [0, 1] such that σi(h̃
−,t−1,mi) = pi(mi) for every time

period t = 0, 1, 2, . . ., reduced history h̃−,t−1 ∈ (H̃−)t−1, and match mi ∈Mi.

Given any profile (σ−1 , σ
−
2 ) ∈ Σ−1 × Σ−2 of reduced strategies and the probability γ ∈

(0, 1) that a newly arrived task is a sweet potato, let

Ui(σi, σ−i) = E

[
∞∑
t=0

βt rti

]

be player i’s expected discounted sum of payoffs, where E[·] is the expectation operator

induced by the strategies (σ−1 , σ
−
2 ) and the probability γ. Then, a reduced Markov Perfect

equilibrium is a pair of reduced strategies (σ∗1, σ
∗
2) ∈ Σ−1 × Σ−2 such that for each player

i ∈ {1, 2}, σ−i is stationary Markov and there is no profitable deviation, i.e.,

Ui(σ
∗
i , σ

∗
i−) ≥ Ui(σi, σ

∗
−i) for all σi ∈ Σi.

The following result shows that we can restrict attention to reduced strategies for

the purposes of characterizing the Markov equilibria. To formalize this claim, say that a

Markov perfect equilibrium and a reduced Markov perfect equilibrium are equivalent if for

every state (τ , i, τ ′), they induce the same probability distribution over actions. Notice

that equilibria that are equivalent induce the same expected payoffs for each player. Then,

the claim is:

Proposition A.1. [Equivalence MPE and Reduced MPE] Fix a discount factor

β ∈ (0, 1), probability γ ∈ (0, 1) that a task is a sweet potato, and payoff parameters

us > 0 and uh < 0. Then, the sets of Markov perfect equilibria and reduced Markov

14



perfect equilibria are equivalent: For every Markov perfect equilibrium, there is a reduced

Markov perfect equilibrium that induces the same action distribution in every state; and

for every reduced Markov perfect equilibrium, there is a Markov perfect equilibrium that

induces the same action distribution in every state.

Proof. A reduced Markov perfect equilibrium is characterized by the probabilities {qτi }τ ,i
that a player i ∈ {1, 2} accepts a task of type τ ∈ T when they are matched; likewise, a

Markov perfect equilibrium is characterized by the probabilities {qτi (τ ′)}τ ,i,τ ′ that a player

i ∈ {1, 2} accepts a task of type τ ∈ T when they are matched and the other task is of

type τ ′ ∈ T if such a task exists and τ ′ = ∅ otherwise.

Fix a Markov perfect equilibrium defined by the probabilities {qτi (τ ′)}τ ,i,τ ′ . Suppose

the current state (at time t) is (τ , i, τ ′) ∈ T ×{1, 2}×T ∗. We will construct an equivalent

Markov perfect equilibrium {qτi }τ ,i. First suppose τ is a new task (i.e., τ = (n, s) or

τ = (n, h)). Then, the distribution over available tasks in periods t′ > t is independent

of τ ′ (because the other task, if such a task exists, is old and will therefore cease to be

available in the next period). Hence, if qτi (τ ′) 6= qτi (τ ′′) for τ ′′ ∈ T ∗, then this does not

affect payoffs (since both current and future payoffs are unaffected by τ ′, τ ′′). Therefore,

if q := qτi (τ ′) is a best response for player i (given the other player’s strategy) when he

is matched with a task of type τ ∈ {(n, s), (n, h)} and the other task has type τ ′, then

q is a best response for player i when he is matched with a task of type τ and the other

task has type τ ′′.9 Hence, we can set qτi := qτi (∅). Next suppose τ is an old task (i.e.,

τ = (o, s) or τ = (o, h)). Then, the distribution over tasks available in future periods

t′ > t does not depend on i’s decision whether to accept the task (since the old task will

not be available in the next period regardless of i’s action). So, while τ ′ may affect the

probability distribution over future states, player i cannot affect this distribution through

his action in t. Hence, qτi (τ ′) is chosen only to maximize the stage payoff and this does

not depend on τ ′. Therefore, if q := qτi (τ ′) is a best response for player i (given the other

player’s strategy) when he is matched with a task of type τ and the other type has type

τ ′, then q is a best response for player i when he is matched with a task of type τ and the

other type has type τ ′′. Again, we can set qτi := qτi (∅). By the above argument, {qτi }τ ,i
defines a reduced Markov perfect equilibrium that is equivalent to the Markov perfect

equilibrium defined by {qτi (τ ′)}τ ,i,τ ′ .
Conversely, fix a reduced Markov perfect equilibrium characterized by probabilities

{qτi }τ ,i. We claim that {qτi (τ ′)}τ ,i,τ ′ with qτi (τ ′) for all i ∈ {1, 2}, τ ∈ T and τ ′ ∈ T ∗ de-

fines a Markov perfect equilibrium. To see this, suppose that the current state (at time t)

is (τ , i, τ ′) ∈ T ×{1, 2}×T ∗. First suppose τ is a new task (i.e., τ = (n, s) or τ = (n, h)).

9Notice that this argument makes use of the fact that only the player who is matched to a task (here:

player i) gets to move in a given period.
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Again, the distribution over available tasks in periods t′ > t does not depend on τ ′.

Hence, player i cannot gain by deviating from qτi by conditioning his action on whether

τ ′ = (o, s), τ ′ = (o, h), or τ ′ = ∅. (Recall that these are the only possibilities given that τ

is a new task.) So, qτi (τ ′) = qτi is a best response for player i for any τ ′ ∈ {(o, s), (o, h), ∅}.
Next suppose τ is an old task (i.e., τ = (o, s) or τ = (o, h)). Then, as noted earlier, the

distribution over tasks available in future periods t′ > t does not depend on i’s decision

whether or not to accept the task. So, while τ ′ may affect the probability distribution

over future states, player i cannot gain by deviating from qτi by conditioning his action on

τ ′. Hence, {qτi (τ ′)}τ ,i,τ ′ with qτi (τ ′) for all i ∈ {1, 2}, τ ∈ T and τ ′ ∈ T ∗ defines a Markov

perfect equilibrium. �

Proposition A.1 shows that, when considering Markov perfect equilibria, a match (τ , i)

is a “sufficient statistic” for the state (τ , i, τ ′).10

We next show that the same result holds for the optimal matching case. Say that a

policy (σ1, σ2) is a reduced policy if the strategies σ1, σ2 are reduced strategies. Then, a

reduced policy (σ1, σ2) and a policy (σ′1, σ
′
2) are equivalent if for each player i, the strate-

gies σi and σ′i are equivalent. Again, equivalence in terms of distributions over actions

implies equivalence in terms of expected payoffs. Also, a policy (σ1, σ2) is stationary

Markov if σ1 and σ2 are stationary Markov.

Proposition A.2. [Equivalence Stationary Markov Policies] Fix a discount factor

β ∈ (0, 1), probability γ ∈ (0, 1) that a task is a sweet potato, and payoff parameters us > 0

and uh < 0. Then, the sets of stationary Markov policies and reduced stationary Markov

policies are equivalent.

The proof is essentially identical to that of Proposition A.1 and is therefore omitted.

A.2 Proof of Proposition 3.1

By Proposition A.1 in Appendix A.1, we can restrict attention to reduced Markov perfect

equilibria. To ease the presentation, we will drop the qualifier “reduced” in this proof

when referring to reduced strategies so to avoid awkward constructions such as stationary

Markov reduced strategies. Restricting attention to reduced Markov perfect equilibria

significantly simplifies the analysis. To further simplify the problem, it will be convenient

10Notice that this is not necessarily true for non-Markovian strategies. For example, if the state at

time t is (τ , i, τ ′) and the other player j 6= i conditions his action in future periods t′ > t on the fact that

the type of the other task in t was τ ′ (in addition to other information, such as the state in t′), then it

can be optimal for i to condition his action in t on τ ′. However, these type of strategies do not seem very

natural.
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to consider the continuation payoffs a player expects to receive before a match is realized.

This will also facilitate the comparison with the optimal matching case (where the identity

of the player who is matched to a task is irrelevant). To define the (expected) continuation

payoffs, say that the task composition specifies the set of the set of available tasks (in a

given period). Given that tasks are available for two periods (if they are not accepted

by a player), there are six possible task compositions: one (new) sweet potato (denoted

by S); one (new) hot potato (H); two sweet potatoes (SS); two hot potatoes (HH); a

new hot potato and an old sweet potato (HS); and a new sweet potato and an old hot

potato (SH). Let Θ := {S,H, SS,HH,HS, SH} be the set of task compositions. For

θ ∈ Θ, let Vi(θ) be the continuation payoff for player i ∈ {1, 2} if the task composition is

θ (prior to any match being realized). Let pθ
′

θ be the transition probability from θ to θ′,

i.e., probability of reaching θ′ ∈ Θ from θ ∈ Θ (given {qτi }τ∈T,i∈{1,2}).
Recall that a stationary Markov strategy for a given player is characterized by the

probabilities that it accepts a task of each type (conditional on being matched). Let qτi
be the probability that player i ∈ {1, 2} accepts a task of type τ ∈ T after having been

matched with the task.

We first specify the transition probabilities and the continuation payoffs given a profile

{qτi }τ ,i of stationary Markov strategies. Note that if the current task composition is S or

H, then the task is new (i.e., the type of the task is (n, s) or (n, h), respectively). So, if

the current task composition is S, then the transition probabilities are

pSS = γ(1
2
q

(n,s)
1 + 1

2
q

(n,s)
2 );

pHS = (1− γ) (1
2
q

(n,s)
1 + 1

2
q

(n,s)
2 );

pSSS = γ(1
2
(1− q(n,s)

1 ) + 1
2
(1− q(n,s)

2 ));

pHSS = (1− γ) (1
2
(1− q(n,s)

1 ) + 1
2
(1− q(n,s)

2 ));

and the expected continuation payoff is

Vi(S) = 1
2
q

(n,s)
i us + β

[
pSSVi(S) + pHS Vi(H) + pSSS Vi(SS) + pHSS Vi(HS)

]
. (A.1)

Second, if the current task composition is H, then the transition probabilities are

pSH = γ(1
2
q

(n,h)
1 + 1

2
q

(n,h)
2 );

pHH = (1− γ) (1
2
q

(n,h)
1 + 1

2
q

(n,h)
2 );

pSHH = γ(1
2
(1− q(n,h)

1 ) + 1
2
(1− q(n,h)

2 ));

pHHH = (1− γ) (1
2
(1− q(n,h)

1 ) + 1
2
(1− q(n,h)

2 ));

and the expected continuation payoff is

Vi(H) = 1
2
q

(n,h)
i uh + β

[
pSHVi(S) + pHHVi(H) + pSHH Vi(SH) + pHHH Vi(HH)

]
. (A.2)
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Third, if the current task composition is SS, then the transition probabilities are

pSSS = 1
2
pSS;

pHSS = 1
2
pHS ;

pSSSS = 1
2
γ + 1

2
pSSS ;

pHSSS = 1
2
(1− γ) + 1

2
pHSS ;

and the expected continuation payoff is (using (A.1)),

Vi(SS) = 1
4
q

(o,s)
i us + 1

2
Vi(S) + 1

2
β [γVi(SS) + (1− γ)Vi(HS)] . (A.3)

Fourth, if the current task composition is SH, then the transition probabilities are

pSSH = pSSS;

pHSH = pHSS;

pSSSH = pSSSS;

pHSSH = pHSSS ;

and the expected continuation payoff satisfies

Vi(SS)− Vi(SH) = 1
4
q

(o,s)
i us − 1

4
q

(o,h)
i uh. (A.4)

Fifth, if the current task composition is HH, then the transition probabilities are

pSHH = 1
2
pSH ;

pHHH = 1
2
pHH ;

pSHHH = 1
2
γ + 1

2
pSHH ;

pHHHH = 1
2

(1− γ) + 1
2
pHHH .

and the expected continuation payoff is (using (A.2)),

Vi(HH) = 1
4
q

(o,h)
i uh + 1

2
Vi(H) + 1

2
β [γVi(SH) + (1− γ)Vi(HH)] . (A.5)

Sixth, if the current task composition is HS, then the transition probabilities are

pSHS = pSHH ;

pHHS = pHHH ;

pSHHS = pSHHH ;

pHHHS = pHHHH ;
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and the expected continuation payoff satisfies

Vi(HS)− Vi(HH) = 1
4
q

(o,s)
i us − 1

4
q

(o,h)
i uh. (A.6)

Also, note that by the one-shot deviation principle, a stationary Markov strategy {qτi }τ
for a player i ∈ {1, 2} is a best response to a stationary Markov strategy {qτj }τ for player

j 6= i if and only if there is no profitable one-shot deviation in any θ ∈ Θ where player

i is matched with type τ (assuming that the continuation payoffs are determined by the

probabilities {qτ1}τ and {qτ2}τ ).
The proof now follows from a series of lemmas. The first results characterizes a player’s

best response given that the other player plays a reduced stationary Markov strategy.

Lemma A.1. Given a reduced stationary Markov strategy for player j ∈ {1, 2}, a reduced

stationary Markov strategy {qτi }τ is a best response for player i ∈ {1, 2}, i 6= j, if and

only if the following four conditions hold: (1) q
(o,s)
i = 1; (2) q

(o,h)
i = 0; (3) one of the

following holds:

us + β [γVi(S) + (1− γ)Vi(H)] ≥ β [γVi(SS) + (1− γ)Vi(HS)] , q
(n,s)
i = 1;

us + β [γVi(S) + (1− γ)Vi(H)] = β [γVi(SS) + (1− γ)Vi(HS)] , q
(n,s)
i ∈ [0, 1];

us + β [γVi(S) + (1− γ)Vi(H)] ≤ β [γVi(SS) + (1− γ)Vi(HS)] , q
(n,s)
i = 0;

and (4) one of the following holds:

uh + β [γVi(S) + (1− γ)Vi(H)] ≥ β [γVi(SH) + (1− γ)Vi(HH)] q
(n,h)
i = 1,

uh + β [γVi(S) + (1− γ)Vi(H)] = β [γVi(SH) + (1− γ)Vi(HH)] q
(n,h)
i ∈ [0, 1],

uh + β [γVi(S) + (1− γ)Vi(H)] ≤ β [γVi(SH) + (1− γ)Vi(HH)] q
(n,h)
i = 0.

Proof. We start with (1). The result is immediate: For any θ ∈ Θ where player i may be

matched with an old sweet potato, accepting the old sweet potato gives a positive payoff

us > 0 in the current period and does not influence the transition probabilities (i.e., pθ
′

θ

is independent of q
(o,s)
i for all i ∈ {1, 2}, θ, θ′ ∈ Θ). So, there is no profitable one-shot

deviation if and only if q
(o,s)
i = 1. Next consider (2). The result is again immediate: For

any θ ∈ Θ where player i can be matched with an old hot potato, accepting the old hot

potato gives a negative payoff uh < 0 in the current period and does not influence the

transition probabilities (i.e., pθ
′

θ is independent of q
(o,h)
i for all i ∈ {1, 2}, θ, θ′ ∈ Θ). So,

there is no profitable one-shot deviation if and only if q
(o,h)
i = 0.

We next consider (3). We derive these conditions from the incentive compatibility

constraints for player i when he is matched with type τ = (n, s). First suppose q
(n,s)
i = 1.

There is no profitable deviation for player i when he is matched with (n, s) if and only if

us + β [γVi(S) + (1− γ)Vi(H)] ≥ β [γVi(SS) + (1− γ)Vi(HS)] .
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Next suppose q
(n,s)
i ∈ [0, 1]. Then there is no profitable deviation for player i when he is

matched with (n, s) in if and only if

us + β [γVi(S) + (1− γ)Vi(H)] = β [γVi(SS) + (1− γ)Vi(HS)] .

Finally, suppose q
(n,s)
i = 0. Then there is no profitable deviation for player i when he is

matched with (n, s) if and only if

us + β [γVi(S) + (1− γ)Vi(H)] ≤ β [γVi(SS) + (1− γ)Vi(HS)] .

It remains to consider (4). We derive these conditions from the incentive compatibility

constraints for player i when he is matched with type τ = (n, h). First suppose q
(n,h)
i = 1.

There is no profitable deviation for player i when he is matched with (n, h) if and only if

uh + β [γVi(S) + (1− γ)Vi(H)] ≥ β [γVi(SH) + (1− γ)Vi(HH)] .

Next suppose q
(n,h)
i ∈ [0, 1]. Then there is no profitable deviation for player i when he is

matched with (n, h) if and only if

uh + β [γVi(S) + (1− γ)Vi(H)] = β [γVi(SH) + (1− γ)Vi(HH)] .

Finally, suppose q
(n,h)
i = 0. Then there is no profitable deviation for player i when he is

matched with (n, h) if and only if

uh + β [γVi(S) + (1− γ)Vi(H)] ≤ β [γVi(SH) + (1− γ)Vi(HH)] .

This proves the lemma. �

The result says that in any reduced Markov perfect equilibrium (and thus in any

Markov perfect equilibrium), old tasks are accepted if they are sweet potatoes but not if

they are hot potatoes. This is intuitive. Suppose that a player is matched with an old

task in a given period t. Then the future payoffs are independent of the player’s decision

whether or not to accept this task. This follows because, in either case, the old task is no

longer available in t+ 1 and the new task from t becomes the old task in t+ 1. Thus, if a

player is matched to an old task, the unique best response is to accept the old task if it

is a sweet potato and not to accept it if he is a hot potato.

Lemma A.1 and Eqs. (A.3)–(A.6) imply

(γVi(SS) + (1− γ)Vi(HS))
(
1− 1

2
β
)

=
1
4
us(1− 1

2
β(1− γ)) + 1

2
[γVi(S) + (1− γ)Vi(H)] (A.7)
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and

(γVi(SH) + (1− γ)Vi(HH))
(
1− 1

2
β
)

= 1
8
βγus + 1

2
[γVi(S) + (1− γ)Vi(H)] . (A.8)

The following lemma shows that players accept new sweet potatoes in any (reduced)

Markov perfect equilibrium.

Lemma A.2. In any reduced Markov perfect equilibrium, q
(n,s)
i = 1 for i ∈ {1, 2}.

Proof. Consider the reduced strategy that accepts only sweet potatoes (new or old).

This reduced strategy strategy yields a positive payoff in every period that the player is

matched, regardless of the strategy of the other player (stationary Markov or not). Hence,

in any Markov perfect equilibrium, the expected discounted payoff for player i must be

positive. In particular, if θ = S,

max {us + β [γVi(S) + (1− γ)Vi(H)] , β [γVi(SS) + (1− γ)Vi(HS)]} > 0.

Thus, if γVi(SS) + (1− γ)Vi(HS) ≤ 0 then

us + β [γVi(S) + (1− γ)Vi(H)] > β [γVi(SS) + (1− γ)Vi(HS)] ,

and the result follows from Lemma A.1. So suppose γVi(SS) + (1 − γ)Vi(HS) > 0. By

(A.7),

(γVi(S) + (1− γ)Vi(H))− (γVi(SS) + (1− γ)Vi(HS)) =

[γVi(SS) + (1− γ)Vi(HS)] (1− β)− 1
2
us(1− 1

2
β(1− γ)).

Hence,

us + β [γVi(S) + (1− γ)Vi(H)] > β [γVi(SS) + (1− γ)Vi(HS)] .

The conclusion now follows from Lemma A.1. �

Lemma A.3. Suppose that player j ∈ {1, 2} accepts any sweet potato and any new hot

potato, but that he does not accept any old hot potatoes (i.e., q
(n,s)
j = q

(o,s)
j = q

(n,h)
j = 1

and q
(o,h)
j = 0). Then, the same reduced stationary Markov strategy (i.e., q

(n,s)
i = q

(o,s)
i =

q
(n,h)
i = 1, and q

(o,h)
i = 0) is a best response for player i 6= j if and only if∣∣∣∣uhus

∣∣∣∣ ≤ 1
4
βγ
(
1− 1

2
β
)

1− 1
4
β − 1

4
βγ
.
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Proof. By (A.1) and (A.2),

Vi(S) = 1
2
us + β

[
pSSVi(S) + pHS Vi(H) + pSSS Vi(SS) + pHSS Vi(HS)

]
;

Vi(H) = 1
2
uh + β

[
pSHVi(S) + pHHVi(H) + pSHH Vi(SH) + pHHH Vi(HH)

]
;

moreover,

pSS = γ; pHS = 1− γ; pSSS = 0; pHSS = 0;

pSH = γ; pHH = 1− γ; pSHH = 0; pHHH = 0.

Therefore,

γVi(S) + (1− γ)Vi(H) =
1
2

[γus + (1− γ)uh]

1− β .

By (A.8),

[γVi(SH) + (1− γ)Vi(HH)]
(
1− 1

2
β
)

= 1
8
βγus + 1

2
(γVi(S) + (1− γ)Vi(H))

= 1
8
βγus +

1
4

(γus + (1− γ)uh)

1− β .

Thus,

(γVi(S) + (1− γ)Vi(H))− (γVi(SH) + (1− γ)Vi(HH))

=
1
2

(γus + (1− γ)uh)

1− β −
1
8
βγus

1− 1
2
β
−

1
4

(γus + (1− γ)uh)

(1− β)
(
1− 1

2
β
)

=
1
4

(γus + (1− γ)uh)− 1
8
βγus

1− 1
2
β

Hence,

uh + β
[
(γVi(S) + (1− γ)Vi(H))− (γVi(SH) + (1− γ)Vi(HH))

]
≥ 0

if and only if

uh + β

( 1
4

(γus + (1− γ)uh)− 1
8
βγus

1− 1
2
β

)
≥ 0

and, therefore, if and only if

uh ≥ −
1
4
βγ
(
1− 1

2
β
)

1− 1
2
β + 1

4
β(1− γ)

us.

Finally, recall that by (A.4) and (A.6)

Vi(SS)− Vi(SH) = 1
4
us;

Vi(HS)− Vi(HH) = 1
4
us.
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Therefore,

[γVi(S) + (1− γ)Vi(H)]− [γVi(SS) + (1− γ)Vi(HS)]

= [γVi(S) + (1− γ)Vi(H)]− [γVi(SH) + (1− γ)Vi(HH)]− 1
4
us

=
1
4

[γus + (1− γ)uh]

1− 1
2
β

−
1
8
βγus

1− 1
2
β
− 1

4
us.

Consequently,

us + β
[
(γVi(S) + (1− γ)Vi(H))− (γVi(SS) + (1− γ)Vi(HS))

]
≥ 0.

The conclusion now follows from Lemma A.1. �

Lemma A.4. Suppose that player j ∈ {1, 2} accepts any sweet potato but rejects any hot

potato (i.e., q
(n,s)
j = q

(o,s)
j = 1 and q

(n,h)
j = q

(o,h)
j = 0). Then, the same reduced stationary

Markov strategy (i.e., q
(n,s)
i = q

(o,s)
i = 1 and q

(n,h)
i = q

(o,h)
i = 0) is a best response for

player i 6= j if and only if ∣∣∣∣uhus
∣∣∣∣ ≥ 1

4
βγ
(
1− 1

2
β
)

1− 1
2
βγ

.

Proof. By (A.1) and (A.2),

Vi(S) = 1
2
us + β

[
pSSVi(S) + pHS Vi(H) + pSSS Vi(SS) + pHSS Vi(HS)

]
;

Vi(H) = β
[
pSHVi(S) + pHHVi(H) + pSHH Vi(SH) + pHHH Vi(HH)

]
.

moreover,

pSS = γ; pHS = 1− γ; pSSS = 0; pHSS = 0;

pSH = 0; pHH = 0; pSHH = γ; pHHH = 1− γ.

Thus,

Vi(S) = 1
2
us + β

(
γVi(S) + (1− γ)Vi(H)

)
Vi(H) = β [γVi(SH) + (1− γ)Vi(HH)] .

Consequently,

(γVi(S) + (1− γ)Vi(H)) (1− βγ) = 1
2
γus + β (1− γ) [γVi(SH) + (1− γ)Vi(HH)] .

By (A.8),

1
2

(γVi(S) + (1− γ)Vi(H)) = −1
8
βγus +

(
1− 1

2
β
)

(γVi(SH) + (1− γ)Vi(HH)) .
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Solving this linear system of two equations for the terms (γVi(S) + (1− γ)Vi(H)) and(
1− 1

2
β
)

(γVi(SH) + (1− γ)Vi(HH)) and combining the results yields

[γVi(S) + (1− γ)Vi(H)]− [γVi(SH) + (1− γ)Vi(HH)] =
1
4
γus(1− 1

2
β)

1− 1
2
βγ

.

Hence,

uh + β ([γVi(S) + (1− γ)Vi(H)]− [γVi(SH) + (1− γ)Vi(HH)]) ≤ 0

if and only if

uh + β

( 1
4
γus(1− 1

2
β)

1− 1
2
βγ

)
≤ 0,

or, equivalently,

uh ≤ −
1
4
βγus(1− 1

2
β)

1− 1
2
βγ

.

Finally, by (A.4) and (A.6),

Vi(SS)− Vi(SH) = 1
4
us;

Vi(HS)− Vi(HH) = 1
4
us.

Combining these results,

[γVi(S) + (1− γ)Vi(H)]− [γVi(SS) + (1− γ)Vi(HS)] =
1
4
γus(1− 1

2
β)

1− 1
2
βγ

− 1
4
us.

Thus,

us + β ([γVi(S) + (1− γ)Vi(H)]− [γVi(SS) + (1− γ)Vi(HS)]) ≥ 0.

The conclusion now follows from Lemma A.1. �

Lemma A.5. If

−
1
4
βγ
(
1− 1

2
β
)

1− 1
4
β − 1

4
βγ
≥
∣∣∣∣uhus
∣∣∣∣ ≥ − 1

4
βγ
(
1− 1

2
β
)

1− 1
2
βγ

. (A.9)

then there is a reduced Markov perfect equilibrium such that each player i ∈ {1, 2} accepts

new hot potatoes with probability

q
(n,h)
i =

uh
(
1− 1

2
βγ
)

+ 1
4
βγus − 1

8
β2γus

1
4
βuh (1− γ)

. (A.10)

There are no other reduced Markov perfect equilibria with q
(n,h)
i ∈ (0, 1) for each i ∈ {1, 2}.

There is also no reduced Markov perfect equilibrium with q
(n,h)
i ∈ (0, 1) for some player

24



i ∈ {1, 2} and q
(n,h)
j ∈ {0, 1} for j 6= i, except in knife-edge cases where ρ =

1
4
βγ

(
1−1

2
β
)

1−1
2
βγ

or

ρ =
1
4
βγ

(
1−1

2
β
)

1−1
4
β−1

4
βγ

, in which case q
(n,h)
j = 1, q

(n,h)
i ∈ [0, 1] for i 6= j.

Proof. If q
(n,s)
1 = q

(n,s)
2 = 1,

pSS = γ; pHS = 1− γ;

pSSS = 0; pHSS = 0.

Thus,

Vi(S) = 1
2
us + β [γVi(S) + (1− γ)Vi(H)]

In addition, let q
(n,h)
1 + q

(n,h)
2 = q. Then,

pSH = 1
2
γq; pHH = 1

2
(1− γ)q;

pSHH = γ(1− 1
2
q); pHHH = (1− γ) (1− 1

2
q).

Hence,

Vi(H) = 1
2
q

(n,h)
i uh + 1

2
βq [γVi(S) + (1− γ)Vi(H)] +β(1− 1

2
q) [γVi(SH) + (1− γ)Vi(HH)]

and

(γVi(S) + (1− γ)Vi(H))(1− βγ − 1
2
βq (1− γ)) =

1
2
γus + 1

2
(1− γ) q

(n,h)
i uh + β (1− γ) (1− 1

2
q) [γVi(SH) + (1− γ)Vi(HH)] .

By (A.8),

[γVi(SH) + (1− γ)Vi(HH)]
(
1− 1

2
β
)

= 1
8
βγus + 1

2
[γVi(S) + (1− γ)Vi(H)] .

Again, solving this system of linear equations for γVi(S) + (1− γ)Vi(H) and γVi(SH) +

(1− γ)Vi(HH) and rearranging gives

[γVi(S) + (1− γ)Vi(H)]− [γVi(SH) + (1− γ)Vi(HH)] =

1
4
γus + 1

4
(1− γ) q

(n,h)
i uh − 1

8
βγus

1− 1
2
βγ − 1

4
βq (1− γ)

.

By Lemma A.1, both players are indifferent between accepting and rejecting new hot

potatoes if and only if for i ∈ {1, 2},

uh + β ([γVi(S) + (1− γ)Vi(H)]− [γVi(SH) + (1− γ)Vi(HH)]) = 0. (A.11)
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By the above argument, this holds if and only if

uh + β

(
1
4
γus + 1

4
(1− γ) q

(n,h)
i uh − 1

8
βγus

1− 1
2
βγ − 1

4
βq (1− γ)

)
= 0.

This holds if and only if q
(n,h)
1 = q

(n,h)
2 = 1

2
q and

uh
(
1− 1

2
βγ − 1

4
βq (1− γ)

)
= −β

(
1
4
γus + 1

4
(1− γ) quh − 1

8
βγus

)
.

The latter is equivalent to

q =
uh
(
1− 1

2
βγ
)

+ 1
4
βγus − 1

8
β2γus

1
8
β (1− γ)uh

.

It will be convenient to introduce the notation q̄ := q; we have q̄ ∈ [0, 2] if and only if

1
4
βγ
(
1− 1

2
β
)

1− 1
2
β − 1

4
βγ
≥
∣∣∣∣uhus
∣∣∣∣ ≥ 1

4
βγ
(
1− 1

2
β
)

1− 1
2
βγ

. (A.12)

Again, by (A.4) and (A.6),

Vi(SS)− Vi(SH) = 1
4
us;

Vi(HS)− Vi(HH) = 1
4
us.

Therefore, if (A.11) holds, then

us + β
(

[γVi(S) + (1− γ)Vi(H)]− [γVi(SS) + (1− γ)Vi(HS)]
)
≥ 0.

By Lemma A.1, if (A.12) holds, then there is a reduced Markov perfect equilibrium where

q
(o,s)
i = q

(n,s)
i = 1, q

(o,h)
i = 0, q

(n,h)
i = 1

2
q̄ for i ∈ {1, 2}. There is no other reduced Markov

perfect equilibrium with q
(n,h)
i ∈ (0, 1) for i ∈ {1, 2}. This proves the first claim.

Now assume that one player rejects hot potatoes while the other player randomizes

over accepting and rejecting new hot potatoes. That is, q
(n,h)
j = 0 and q

(n,h)
i ∈ (0, 1)

(where j 6= i). Then, by previous results, q
(o,s)
i = q

(n,s)
i = 1, q

(o,h)
i = 0, and q

(n,h)
i = q. So,

the indifference condition for player i becomes

uh + β

( 1
4
γus + 1

4
(1− γ) quh − 1

8
βγus

1− 1
2
βγ − 1

4
βq (1− γ)

)
= 0.

This is equivalent to

uh = −
1
4
βγus

(
1− 1

2
β
)

1− 1
2
βγ

.

26



Next assume that one player accepts hot potatoes while the other player randomizes

over accepting and rejecting new hot potatoes. That is, q
(n,h)
j = 1 and q

(n,h)
i ∈ (0, 1).

Then, q
(n,h)
i = q − 1 and for each i ∈ {1, 2}, q(o,s)

i = q
(n,s)
i = 1, q

(o,h)
i = 0; So, the

indifference condition for player i becomes

uh + β

( 1
4
γus + 1

4
(1− γ) (1 + q)uh − 1

8
βγus

1− 1
2
βγ − 1

4
βq (1− γ)

)
= 0,

or, equivalently,

uh = −
1
4
βγus

(
1− 1

2
β
)

1− 1
4
β − 1

4
βγ

.

This proves the lemma. �

We are now ready to prove Proposition 3.1. Let

ρ1 :=
1
4
βγ
(
1− 1

2
β
)

1− 1
2
βγ

and ρ2 :=
1
4
βγ(1− 1

2
β)

1− 1
4
β − 1

4
βγ

and note that ρ1 < ρ2. Also recall that ρ := |uh/us|. By Lemmas A.1–A.2, in any reduced

Markov perfect equilibrium (and therefore in any Markov perfect equilibrium), players

reject old hot potatoes while they accept sweet potatoes (new or old). By Lemma A.3,

if the other player accepts new hot potatoes, then accepting new hot potatoes is a best

response for a player if and only if ρ ≤ ρ2; and by Lemma A.4, if the other player rejects

new hot potatoes, then rejecting new hot potatoes is a best response for a player if and

only if ρ ≥ ρ1. So, if ρ < ρ1, there is a unique Markov perfect equilibrium, and in this

equilibrium, all players accept new hot potatoes; likewise, if ρ > ρ2, there is a unique

Markov perfect equilibrium, and in this equilibrium, players reject new hot potatoes. For

the intermediate case ρ ∈ [ρ1, ρ2], there are two pure Markov perfect equilibria, one in

which players reject new hot potatoes, and one in which they reject them. By Lemma

A.5, there can additionally be mixed Markov perfect equilibria for these parameters: If

ρ ∈ (ρ1, ρ2), there is a unique Markov perfect equilibrium in strictly mixed strategies. In

this equilibrium, both players accept new hot potatoes with probability

q =
uh
(
1− 1

2
βγ
)

+ 1
4
βγus − 1

8
β2γus

1
4
β (1− γ)uh

,

which lies strictly between 0 and 1. If ρ = ρ1 or ρ = ρ2, there is a continuum of mixed

Markov perfect equilibria. In these equilibria, one player accepts or rejects new hot

potatoes with probability one, whereas the other accepts new hot potatoes with some

probability q ∈ (0, 1). �
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A.3 Proof of Proposition 3.2

By Proposition A.2 in Appendix A.1, we can restrict attention to policies in reduced

strategies. For ease of exposition, we will drop the qualifier “reduced” in this proof when

referring to reduced policies or reduced strategies.

We characterize the optimal policy σ∗. By standard arguments, we can restrict atten-

tion to pure stationary Markov policies (Puterman, 2014, Thm. 5.5.3, Prop. 6.2.1). That

is, we can restrict attention to policies σ = (σ1, σ2), with σi : T → {0, 1} for i ∈ {1, 2},
where σi(τ) = 1 (resp. σi(τ) = 0) indicates that player i accepts (resp. rejects) a task of

type τ (conditional on being matched).

The transition probabilities (pθ
′

θ )θ,θ′∈Θ induced by a policy σ are as in the proof of

Proposition 3.1 (with the minor notational change that σi(τ) replaces qτi in the relevant

expressions for a policy σ).

The proof follows from a series of lemmas. The first two lemmas show that under the

optimal policy, players accept old sweet potatoes but not old hot potatoes.

Lemma A.6. For all i ∈ {1, 2}, σ∗∗i (o, s) = 1.

Proof. Immediate. Accepting an old sweet potato gives a positive payoff us > 0 in the

current period and does not influence the transition probabilities (i.e., pθ
′

θ is independent

of σ∗∗i (o, s) for all i ∈ {1, 2}, θ, θ′ ∈ Θ). �

Lemma A.7. For all i ∈ {1, 2}, σ∗∗i (o, h) = 0.

Proof. Immediate. Accepting an old hot potato gives a negative payoff uh < 0 in the

current period and does not influence the transition probabilities (i.e., pθ
′

θ is independent

of σ∗∗i (o, h) for all i ∈ {1, 2}, θ, θ′ ∈ Θ). �
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Lemmas A.6–A.7 give the following Bellman equations:11

Vσ∗∗(S) = 1
2

(σ∗∗1 (n, s) + σ∗∗2 (n, s))us +

β
[
pSSVσ∗∗(S) + pHS Vσ∗∗(H) + pSSS Vσ∗∗(SS) + pHSS Vσ∗∗(HS)

]
;

Vσ∗∗(H) = 1
2

(σ∗∗1 (n, h) + σ∗∗2 (n, h))uh +

β
[
pSHVσ∗∗(S) + pHHVσ∗∗(H) + pSHH Vσ∗∗(SH) + pHHS Vσ∗∗(HH)

]
;

Vi(SS) = 1
2
us + 1

2
Vσ∗∗(S) + 1

2
β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] ;

Vσ∗∗(SH) = Vσ∗∗ − 1
2
us;

Vσ∗∗(HH) = 1
2
Vσ∗∗(H) + 1

2
β [γVσ∗∗(SH) + (1− γ)Vσ∗∗(HH)] ;

Vσ∗∗(SH) = Vσ∗∗ + 1
2
us;

Lemma A.8. For all i ∈ {1, 2}, σ∗∗i (n, s) = 1.

Proof. The proof is similar to (but distinct from) the proof for Lemma A.2. We need to

show that for any player that is matched with a new sweet potato, the value of accepting

the sweet potato is greater than the value of rejecting it.

So, suppose that a player is matched with a new sweet potato. There are three

possibilities: either both players accept new sweet potatoes, or one player accepts new

sweet potatoes (and the other one does not), or no player accepts sweet potatoes. Hence,

we need to show that

us + β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] > β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] ; and

us + β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] > 1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] +

1
2
β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] ;

where the first inequality says that, conditional on a player being matched with a new

sweet potato, the expected discounted sum of aggregate payoffs when both players accept

new sweet potatoes exceeds the expected discounted sum of aggregate payoffs when no

player accepts new sweet potatoes; and the second inequality says that the expected

discounted sum of aggregate payoffs when both players accept new sweet potatoes exceeds

the expected discounted sum of aggregate payoffs when only one player accepts new sweet

potatoes. It thus suffices to show that, for any s < 1,

us + β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] > sus + sβ [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] +

(1− s)β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] ,

11Note that the expression for Vσ∗∗(θ) for θ ∈ Θ is similar to, but distinct from, the continuation payoff

Vi(θ) for a player i in the proof of Proposition 3.1 (with q
(o,s)
i = 1 and q

(o,h)
i = 0 for each player i).
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which is equivalent to showing that

us + β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] > β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] . (A.13)

As in the proof of Lemma A.2, a policy under which players accept only sweet potatoes

(whether old or new) can guarantee a positive payoff whenever a player is matched to a

sweet potato. So, under the optimal policy σ∗,

max
s∈{0,1

2
,1}
{sh+ βs [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] + β(1− s) [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)]} > 0

(A.14)

First suppose that γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS) < 0. Then, by (A.14), s 6= 0 under σ∗∗.

So, it remains to consider s ∈ {1
2
, 1}. For s = 1

2
, we have

1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] + 1

2
β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] <

1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] . (A.15)

So, if

1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] + 1

2
β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] > 0, (A.16)

then the right-hand side of (A.15) is positive, and it follows that

1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] + 1

2
β [γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] <

1
2
us + 1

2
β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] < us + β [γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] .

That is, if (A.16) holds, s 6= 1
2

under σ∗∗, so we conclude that s = 1 under σ∗∗. So suppose

(A.16) is not satisfied. Then it follows directly from (A.14) that s = 1 under σ∗∗.

Next suppose γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS) ≥ 0. From the Bellman equations,

(γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS))
(
1− 1

2
β
)

=
1
2
us(1− 1

2
β(1− γ)) + 1

2
[γVσ∗∗(S) + (1− γ)Vσ∗∗(H)] .

Therefore,

(γVσ∗∗(S) + (1− γ)Vσ∗∗(H))− (γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)) =

[γVσ∗∗(SS) + (1− γ)Vσ∗∗(HS)] (1− β)− 1
2
us(1− 1

2
β(1− γ)).

It is then easy to check that (A.13) holds, proving the claim. �
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We are now ready to prove Proposition 3.2. By Lemmas A.6–A.8, under the optimal

matching protocol, players accept sweet potatoes (old or new) and reject old hot potatoes.

It thus remains to identify the conditions under which players accept new hot potatoes.

The discounted sum of aggregate payoffs when players accept sweet potatoes and new hot

potatoes (but reject old hot potatoes) equals

Vaccept(us, uh, β, γ) :=
γus + (1− γ)uh

1− β . (A.17)

We can compare this to the discounted sum Vreject(us, uh, β, γ) of aggregate payoffs when

players accept sweet potatoes but reject hot potatoes (old or new), which can be calculated

from the Bellman equations. We have

Vreject(us, uh, β, γ) = γVσ(S) + (1− γ)Vσ(H),

where σ is the policy under which players accept sweet potatoes but reject hot potatoes

(i.e., for all i ∈ {1, 2}, σi(o, s) = σi(n, s) = 1, σi(o, h) = σi(n, h) = 0). From the Bellman

equations, we have

(1− βγ) [γVσ(S) + (1− γ)Vσ(H)] = γus + β(1− γ)[γVσ(SH) + (1− γ)Vσ(HH)];

(1− 1
2
β) [γVσ(SH) + (1− γ)Vσ(HH)] = 1

4
βγus + 1

2
[γVσ(S) + (1− γ)Vσ(H)].

Solving this system of two linear equations for the two unknown terms [γVσ(S) + (1 −
γ)Vσ(H)] and [γVσ(SH) + (1− γ)Vσ(HH)] yields

Vreject(us, uh, β, γ) =
1
2
γus (β2(1− γ)2 + 2 (2− β))

−γβ(1− β) + 2 (1− β)
. (A.18)

Combining (A.17) and (A.18) and using that ρ = |uh/us|, we find that Veat(us, uh, β, γ) ≥
Vreject(us, uh, β, γ) if and only if

ρ ≤
1
4
βγ (2− β (1− γ)

1− 1
2
βγ

.

The proof then follows by setting ρ∗ :=
1
4
βγ (2−β (1−γ)

1−1
2
βγ

. �
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