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I Strategic uncertainty

In the main text, we argue that culturally diverse societies face more strategic uncertainty than

culturally homogeneous societies. This appendix makes that claim precise. Strategic uncertainty is

high if players are not very informative, i.e., if posterior beliefs are close to the prior. In the current

setting, this is equivalent to the variance in impulses being high.

To show this, we calculate the variance in impulses as a function of diversity. Fix Qin, Qout and

recall that Qin, Qout are functions of culture strength q and cultural distance d. Suppose the level

of diversity is β so that the minority and majority shares are β and β̃ = 1 − α, respectively. For a

player j ∈ N who belongs to the minority group, the expected proportion of players who have the same

impulse as he does isQmin(β; q, d) := β̃Qout+βQin. Likewise, for a player j who belongs to the majority

group, the expected proportion of players who have the same impulse is Qmaj(β; q, d) := β̃Qin+βQout.

Since β̃ ≥ 1
2 and Qin > Qout >

1
2 , Qmaj(β; q, d) ≥ Qmin(β; q, d) > 1

2 (with strict inequality if β < 1
2).

Then, the degree of strategic uncertainty that a player in the minority and the majority face is given

by

Vmin(β; q, d) := Qmin(β; q, d) (1−Qmin(β; q, d));

Vmaj(β; q, d) := Qmaj(β; q, d) (1−Qmaj(β; q, d)),

respectively. So, the majority faces less strategic uncertainty than the minority (i.e., Vmaj(β; q, d) <

Vmin(β; q, d)). We can also define aggregate strategic uncertainty V for the society by

V(β; q, d) := β̃Vmaj(β; q, d) + βVmin(β; q, d).

As V(β; q, d) is increasing in diversity β, players face less strategic uncertainty in culturally homo-

geneous societies than in culturally diverse ones. Also, there is less uncertainty in societies with a

strong culture (V(β; q, d) decreases with q) and that the difference between homogeneous and diverse

societies is larger when the culture is strong and when the cultural distance between groups is large.

That is, if β′ > β, then V(β; q, d)− V(β′; q, d) increases with q and with d.
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II Comparison with correlated equilibrium

This appendix compares the set of all introspective equilibria for a given game (across all societies)

to the set of correlated equilibria. We focus on linear games with identical preferences. Relative to

correlated equilibrium, introspective equilibrium has considerable cutting power. A first observation

is that for any linear game, the set of introspective equilibria (across all societies) is always a strict

subset of the class of correlated equilibria.1 To make this claim precise, we can identity each society

(characterized by β, q, d) with the impulse distribution it generates (Section 2.3). Write ∆ for the

class of impulse distributions that are associated with some society. To be able to compare the set of

introspective equilibria (profiles of mappings from impulses to actions) to correlated equilibria (distri-

butions over action profiles), we consider the distributions over action profiles induced by introspective

equilibrium. That is, for ρ ∈ [0, 1] and µ ∈ ∆, let Σµ(ρ) be the set of distributions over action profiles

induced by some introspective equilibrium for the society described by µ and risk parameter ρ. By

Proposition A.2, Σµ(ρ) has at least one element; and for generic values of ρ, it has precisely one ele-

ment. For ρ ∈ [0, 1], let Σ(ρ) =
⋃
µ∈∆ Σµ(ρ). With some abuse of terminology, we refer to Σ(ρ) as the

set of introspective equilibria (across all µ ∈ ∆) for risk parameter ρ. Let C(ρ) be the set of correlated

equilibria for risk parameter ρ.2 Then, the following claim, which is a corollary of Lemma A.5, shows

that introspective equilibrium can always rule out certain behaviors that are consistent with correlated

equilibrium:

Corollary II.1. [The Cutting Power of Introspective Equilibrium (I)] For any ρ ∈ [0, 1],

the set Σ(ρ) of all introspective equilibria (for some society) is a strict subset of the set C(ρ) of all

correlated equilibria.

Proof. Let ρ ∈ [0, 1]. Then, there is a correlated equilibrium in which all players choose H as well

as a correlated equilibrium in which all players choose L (this follows because both are pure Nash

equilibria). If ρ < 1
2 , then, by Lemma A.5, for every µ ∈ ∆, there is no introspective equilibrium

in Σµ(ρ) such that all players choose L. Likewise, if ρ > 1
2 , then, by Lemma A.5, for every µ ∈ ∆,

there is no introspective equilibrium in Σµ(ρ) such that all players choose H. Finally, if ρ = 1
2 , then,

by Lemma A.5, for every µ ∈ ∆, there is no introspective equilibrium in Σµ(ρ) such that all players

choose L, and no introspective equilibrium in Σµ(ρ) such that all players choose H. �

A second observation is that in some limiting cases, the set of introspective equilibria (across all

societies) collapses to a singleton, as the following corollary of Lemma A.5 demonstrates.3

1We thus restrict attention to impulse distributions that are associated with some society (i.e., impulse

distributions characterized by β, q, d). Without any restrictions on the class of impulse distributions, any

correlated equilibrium is an introspective equilibrium for some impulse distribution. This follows from the

revelation principle: fix a correlated equilibrium and take the impulse distribution to be the distribution over

action profiles generated by the correlated equilibrium. Then the game has a unique introspective equilibrium

in which all players follow their impulse, and this introspective equilibrium coincides with the original correlated

equilibrium. See Myerson (1994) for a version of the revelation principle for complete-information game and a

discussion in the context of correlated equilibrium.
2Note that specifying the risk parameter ρ is sufficient to pin down the incentive constraints: any two linear

games with the same risk parameter have the same set of correlated equilibria.
3The limit of a collection of sets is the set-theoretic limit.
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Corollary II.2. [The Cutting Power of Introspective Equilibrium (II)] As ρ goes to 0, 1, or
1
2 , the set of introspective equilibria (across all societies) converges to a singleton:

(a) As ρ→ 0, the set of introspective equilibria (across all societies) converges to the unique strategy

profile where all players choose the high action regardless of their impulse;

(b) As ρ→ 1, the set of introspective equilibria (across all societies) converges to the unique strategy

profile where all players choose the low action regardless of their impulse;

(c) As ρ→ 1
2 , the set of introspective equilibria (across all societies) converges to the unique strategy

profile in which all players follow their impulse.

Again, the proof follows directly from Lemma A.5. So, in the limit that the risk parameter goes

to 0, 1, or 1
2 , the set of introspective equilibria (across all societies) collapses to a singleton, and

the limiting introspective equilibrium is independent of sociocultural factors. By contrast, the set

of correlated equilibria does not converge to a singleton when the risk parameter goes to 0, 1, or 1
2 .

Instead, it is a continuum (except in trivial cases). To see this, note that for any ρ ∈ [0, 1], the set

of correlated equilibria contains at least the strict Nash equilibria as well as the nonstrict pure Nash

equilibrium in which a proportion ρ of players chooses H; the claim now follows by noting that, except

in knife-edge cases, at least two of these Nash equilibria have different payoff profiles, and the set of

correlated equilibrium payoff profiles includes the convex hull of Nash equilibrium payoff profiles.

III Experimental evidence

This appendix discusses the testable implications of the results in Section 3 in more detail and

relates them to experimental evidence. We focus on linear games with identical preferences (ρj = ρ

for all j) because these games have been the focus of much of the experimental literature, though our

predictions extend more generally.

A first prediction is that the proportion of players who choose the high action increases as the

risk parameter falls. This follows from a straightforward argument based on the proof of Lemma A.5

(Kets et al., 2019). In particular, introspective equilibrium selects one of the pure Nash equilibria if

and only if one of the actions stands out in terms of payoffs (i.e., ρ sufficiently close to 0 or 1). On

the other hand, if there is limited asymmetry between the actions in terms of payoffs, both actions

are chosen with positive probability and behavior is not consistent with Nash equilibrium. There is

considerable experimental evidence for this. For two-player coordination games, Mehta et al. (1994),

Straub (1995) and Schmidt et al. (2003), among many others, show that for intermediate values of the

risk parameter, behavior is not consistent with Nash equilibrium: players coordinate at a higher rate

than in mixed Nash equilibrium, but at a lower rate than in pure Nash equilibrium.4 Another direct

implication is that there can be inefficient lock-in: Players may coordinate on a Pareto-dominated

4We are not aware of any experimental studies that study games with extreme values for the risk parameter.

This could be a selection effect: if the interest is in testing competing hypotheses, there is no reason to select

games for which there is an obvious way to play so that all theories make the same prediction; see Schmidt

et al. (2003, p. 285) for comments along these lines.
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equilibrium. This prediction has received ample experimental support for a range of coordination

games (see, e.g., Van Huyck et al., 1990; Cooper et al., 1990, 1992; Straub, 1995).

A second testable implication is that for intermediate values of the risk parameter (i.e., ρ close to
1
2), behavior is strongly influenced by situational factors (i.e., the cultural salience of actions), and that

behavioral consistency improves when strategic uncertainty decreases. Experimental support for the

influence of contextual factors comes from a variety of sources. First, there is extensive evidence that

past experience influences strategic behavior even when there are no incentives to build reputation

or signal intentions (e.g., Schmidt et al., 2003). To the extent that history shapes impulses, this is

consistent with our results. A second type of evidence for this prediction involves the (cultural) saliency

of alternatives. Evidence suggests that when the payoff structure of the game provides little guidance

(i.e., ρ close to 1
2) and one action is (culturally) salient, then players have a pre-reflective inclination

to select the salient alternative (e.g., Mehta et al., 1994, p. 659). This means that the coordination

rate increases when one of the actions is significantly more salient than others, in line with our model.

A third source of evidence that contextual cues influence behavior comes from individual variation in

perspective-taking ability. An individual with superior perspective-taking abilities presumably has a

highly informative signal about other players’ impulses and will thus be better at coordinating. Curry

and Jones Chesters (2012) show that in the pure coordination games of Mehta et al. (1994), subjects

with superior perspective-taking ability (as measured by a self-report questionnaire) have a higher

probability of coordinating when matched against the population, consistent with our theory.

A third prediction is that it is easier for people to anticipate the actions of members of their own

group and that people who belong to the same group are more likely to have the same impulse. This

is in line with the experimental evidence of Jackson and Xing (2014), who contrast the behavior of

subjects residing in India versus the U.S. in a battle-of-the-sexes game. They find that subjects are

better able to predict the actions of members of their own group. Moreover, the two groups differ

in the actions that they take. To the extent that actions are a function of impulses, these findings

support our assumption that players from the same group are more likely to have the same impulse

and that players find it easier to anticipate the impulses of members of their own group. Consistent

with our predictions, Jackson and Xing find that subjects are more successful at coordinating when

they are matched with a member of their own group.

Existing equilibrium selection methods cannot account for these findings. For example, in the

context of coordination games, payoff dominance selects the same Nash equilibrium independent of

the risk parameter, as do team reasoning theories (Sugden, 1993). Risk dominance makes the stark

prediction that players coordinate on the efficient action (with probability 1) whenever the risk pa-

rameter is less than 1
2 , while they coordinate on the inefficient action whenever the risk parameter

is greater than 1
2 . So, risk dominance cannot explain why there can be miscoordination when there

is limited asymmetry among the actions, as in the work of Mehta et al. (1994) and others.5 Since

the risk-dominant Nash equilibrium is selected by global games methods (Carlsson and van Damme,

1993), evolutionary models (Young, 1993; Kandori et al., 1993), and quantal response equilibrium

(McKelvey and Palfrey, 1995), these methods cannot explain the observed behavior either.6 This also

5Mixed Nash equilibrium can also not account for the observed behavior: The coordination rate in Mehta

et al.’s (1994) and related experiments lies strictly between that in pure and mixed Nash equilibrium.
6The noisy introspection model of Goeree and Holt (2004) predicts non-Nash behavior in at least some

coordination games. However, it is unclear how predictions vary with payoffs and thus whether the model can
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holds for other concepts. Most notably, Crawford and Haller (1990), in their study of how players

use asymmetries in the game to coordinate, derive the stark prediction that players coordinate (with

probability 1) whenever there is some asymmetry between actions, no matter how small. By predict-

ing that coordination succeeds only if there is sufficient asymmetry between the actions, our model

provides a more nuanced and arguably more realistic view than existing concepts. And while some

existing methods, such as risk dominance, the global games selection, and certain learning models,

can account for inefficient lock-in, a novel prediction not captured by existing models is that the gap

between individual incentives and socially optimal behavior is smaller when there is more strategic

uncertainty in the sense that societies that experience more strategic uncertainty can avoid inefficient

lock-in for a larger range of payoff parameters.

IV Details for applications

This appendix shows that our applications of linear games satisfies the conditions for Proposition

3.4 (assuming identical preferences). That is, we show that for each application, the social welfare

function W (m; ρ) is quadratic in m with its minimum m increasing in ρ, or, equivalently, that W (1; ρ)−
W (0; ρ) decreases with m.

We start with the example in Section 3.1 and related models (Sections 4.1 and 4.3). These are

linear games, with the risk parameter for each player j ∈ N equal to ρj = 1
2 + λ

2(1−λ(1− 2τj) (where

λ = 1
2 in Section 3.1). If ρj = ρ for all j, then the social welfare function is quadratic with minimum

m = ρ.

The infinitely repeated game in Section 4.2 is a linear game with identical preferences. To show

that it satisfies the relevant conditions, we show that this is true for general (2 × 2) coordination

games:

H L

H uHH uHL
L uLH uLL

with uHH > uLH , uLL > uHL, and uHH ≥ uLL. The infinitely repeated game is then a special case

(with, e.g., ucc = uHH). Coordination games satisfy the conditions in Proposition 3.4 if 2uLL >

uLH + uHL (which holds if cooperation is efficient, i.e., 2ucc > ucd + udc) and we are considering, e.g.,

increasing uLL to uHH keeping the other payoff parameters fixed.

V Omitted proofs

V.1 Proof of Lemma A.1

At level 0, each player follows his impulse. So, the level-0 strategies are anonymous and we can

write σ0 : S×U×G → S for the level-0 strategy profile. Since a player’s level-0 action depends only on

reproduce the observed comparative statics.
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his impulse, the level-0 strategy is jointly measurable. Hence, players’ expected payoff) is well-defined.

For k > 0, suppose that the level-(k − 1) strategies are anonymous, so that we can denote the

profile by σk−1 : S × U × G → S, and suppose that σk−1 is jointly measurable. Then, players’

expected payoff is well-defined. To show that the level-k strategies are anonymous and measurable,

notice that the mapping from triples (I,G,u) ∈ S × G × U to the associated (interim) expected

payoff U(s, (ms′(σ))s′∈S ; I,G,u) is jointly measurable. It then follows from the Measurable Maximum

Theorem (Aliprantis and Border, 2006, Thm. 18.19) that the best-response correspondence ψk that

maps each triple (I,u, G) into its set of best responses is nonempty and jointly measurable and admits

a measurable selector. Because the action set is finite, this implies that the level-k strategy is jointly

measurable and anonymous. �

V.2 Proof of Proposition A.2 (cntd)

We prove existence of introspective equilibrium for linear games with heterogeneous preferences

where the distribution F (ρj) has mean µ ≥ 1
2 . As for the case µ ≤ 1

2 , we prove the result under

slightly weaker assumptions than in the main text: rather than assuming that f(ρj) is unimodal and

symmetric, we require that the density f(ρj) satisfies

f(1
2 + x) ≥ f(1

2 + y) ∀x, y s.t. y ≥ x ≥ 0; (V.1)

f(1
2 − x) ≥ f(1

2 + x) ∀x ≥ 0. (V.2)

Again, these conditions are satisfied when f(ρj) is unimodal and symmetric (with mean µ ≥ 1
2) but

they are strictly weaker. As before, we can rewrite the expressions for ρkHA and ρkHB as

ρkHA = β̃(Qin − Q̃in)F (ρk−1
HA ) + β̃Q̃in

[
F (ρk−1

HA ) + F (ρk−1
LA )

]
+

β(Qout − Q̃out)F (ρk−1
HB ) + βQ̃out

[
F (ρk−1

HB ) + F (ρk−1
LB )

]
;

ρkHB = β̃(Qout − Q̃out)F (ρk−1
HA ) + β̃Q̃out

[
F (ρk−1

HA ) + F (ρk−1
LA )

]
+

β(Qin − Q̃in)F (ρk−1
LB ) + βQ̃in

[
F (ρk−1

HB ) + F (ρk−1
LB )

]
;

respectively. So, by a similar argument as before, it suffices to prove that {ρkHA}k, {ρkHB}k, and {ρ̄k}k
converge. This follows from the following analogues of Lemmas A.3–A.4:

Lemma V.1. Suppose f(ρj) has mean µ ≥ 1
2 and satisfies (V.1)–(V.2), and fix a group G ∈ {A,B}

and k > 0. If ρ̄k ≤ ρ̄k−1 ≤ 1
2 and ρkLG ≤ ρ

k−1
LG , then F (ρkHG) + F (ρkLG) ≤ F (ρk−1

HG ) + F (ρk−1
LG ).

Proof. For concreteness, take G = A. If ρkLA ≥ ρk−1
LA , then the result follows immediately from the

fact that F (ρj) is increasing. So suppose that ρkLA < ρk−1
LA . Define ∆k := ρkLA − ρ

k−1
LA . By a similar

argument as before,

0 < ∆k ≤ ρk−1
HA − ρ

k
HA

and [
F (ρkHA) + F (ρkLA)

]
−
[
F (ρk−1

HA ) + F (ρk−1
LA )

]
≥
∫ ∆k

0

[
f(ρ̄k + (ρkHA − ρ̄k + u))− f(ρ̄k−1 − (ρkHA − ρ̄k + u)

]
du.

The result then follows by noting that, under (V.1)–(V.2) (and µ ≥ 1
2), for any ρ̄ ≤ 1

2 and x ≥ 0,

f(ρ̄+ x) ≥ f(ρ̄− x).
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To prove the result for k = 1, it suffices to show that for ρ̄ ≤ 1
2 and x ≥ 0, F (ρ̄+x)+F (ρ̄−x) ≤ 1.

But this follows from a similar argument as before, using that f(ρ̄−y) ≤ f(ρ̄+y) for y ≥ 0 and ρ̄ ≤ 1
2 . �

Lemma V.2. Suppose f(ρj) has mean µ ≥ 1
2 and satisfies (V.1)–(V.2). Then, for all k > 0, ρ̄k ≤

ρ̄k−1 ≤ 1
2 , ρkHA ≤ ρ

k−1
HA and ρkHB ≤ ρ

k−1
HB .

The proof is analogous to that of Lemma A.4 and thus omitted. It now follows immediately that

the sequences {ρkHA}k, {ρkHB}k, and {ρ̄k}k converge: As before, by Lemma V.2, each sequence is

bounded and monotone. Hence, there exist ρ̄ ∈ (0, 1
2), ρHA ∈ [ρ̄, 1), and ρHB ∈ [ρ̄, 1) such that ρ̄k ↓ ρ̄,

ρkHA ↓ ρHA, and ρkHB ↓ ρHB. �

V.3 Proof of Lemma A.6

Throughout, we will use that for all I,G, and n, ρn,1IG = ρ1
IG, where ρn,kIG are the level-k cutoffs

under Fn(ρj) and ρ1
IG is the conditional expectation for type (I,G) defined in the proof of Lemma

A.5. We write ρ
(n)
IG for the limits limk→∞ ρ

n.k
IG that describe the introspective equilibria. (These limits

exist by Proposition A.2.)

We start by considering generic values for ρ, i.e., ρ 6∈ {ρ∗HA, ρ∗HB, ρ∗LB, ρ∗LA}, where ρ∗IG is the

cutoff for players from group G with impulse I in introspective equilibrium when players have identical

preferences (Lemma A.5). We need to consider five cases, with each case corresponding to one of the

five cases in Lemma A.5 (Figure 4). Because the cutoffs in Lemma A.5 are symmetric (in ρ = 1
2), we

can group them into three cases:

Case 1: ρ < ρ∗LA or ρ > ρ∗HA First consider the case ρ < ρ∗LA, i.e., ρ < min{ρ1
LB, ρ

2
LA} (where

ρkIG is the level-k cutoff for players from group G with impulse I in a game with identical preferences;

cf.Lemma A.5). Then, under σρ, all players choose H in introspective equilibrium (Lemma A.5(a)).

We discuss the case where ρ1
LB < ρ2

LA (i.e., β > β∗); the proof for other cases is analogous and

hence omitted. Let ρ < ρ1
LB. Because ρ2

LA > ρ1
LB, by continuity, for ζ ∈ (0, 1) sufficiently small,

(1 − ζ)ρ2
LA > ρ1

LB. Fix some ζ ∈ (0, 1) for which this holds. Because ρ < ρ1
LB, there is Nζ such that

for n > Nζ , F
n(ρ1

LB) > 1 − ζ. Fix n > Nζ . Then, by Lemma A.4, for all k ≥ 2, F (ρn,kLB) > 1 − ζ.

Using that ρn,kHA ≥ ρ
n,k
HB ≥ ρ

n,k
LB, we also have F (ρn,kHA), F (ρn.kHB) > 1− ζ. Then, using Lemma A.4 again,

for k ≥ 2,

ρn,kLA > (1− β̃Qin)(1− ζ) = (1− ζ)ρ2
LA > ρ1

LB.

Hence, for all I,G, Fn(ρ
(n)
IG ) > 1− ζ. Since we can always choose ζ < ε, we thus have Fn(ρ

(n)
IG ) > 1− ε

for all I,G whenever n > Nζ . It is now immediate that for the game with distribution Fn(ρj) for

n > Nζ , the proportion of players choosing H is greater than 1−ε in introspective equilibrium in every

state. For example, in state (θA, θB) = (L,L), the proportion of players choosing H in introspective

equilibrium under Fn(ρj) is

β̃ · [q̃Fn(ρ
(n)
HA) + qFn(ρ

(n)
LA)] + β · [q̃F (n)(ρ

(n)
HB) + qFn(ρ

(n)
LB)] >

β̃ · [q̃(1− ε) + q(1− ε)] + β · [q̃(1− ε) + q(1− ε)] = 1− ε.

The proof for the case ρ > ρ∗HA is analogous and thus omitted.
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Case 2: ρ ∈ (ρ∗LB, ρ
∗
HB). Under σρ, all players choose the action they expect to be culturally

salient (Lemma A.5(c)). We start with the case ρ ≤ 1
2 . We claim that there exist ρ̃LB < ρ, ρ̃HB > ρ

and Ñ such that for n > Ñ ,

ρ
(n)
LB ≤ ρ̃LB; ρ

(n)
HB ≥ ρ̃HB. (V.3)

This proves the claim: Because ρ ∈ (ρ̃LB, ρ̃HB), for every ε > 0, there is Ñε such that for n > Ñε,

Fn(ρ̃HB) − Fn(ρ̃LB) > 1 − ε. Then, if we take Nε := max{Ñ , Ñε}, by a similar argument as before,

for n > Nε, F
n(ρ

(n)
HB)− Fn(ρ

(n)
LB) > 1− ε. But then the proportion of players playing according to σρ

under σ(n) is greater than 1 − ε: For example, in state (θA, θB) = (L,L), the proportion of players

choosing the action they expect to be culturally salient under Fn(ρj) is

β̃ · [q̃Fn(ρ
(n)
HA) + q(1− Fn(ρ

(n)
LA))] + β · [q̃Fn(ρ

(n)
HB) + q(1− Fn(ρ

(n)
LB))] >

β̃ · [q̃(1− ε) + q(1− ε)] + β · [q̃(1− ε) + q(1− ε)] = 1− ε.

It remains to prove (V.3). We use that ρ∗LB = ρ1
LB and ρ∗HB = ρ1

HB. For ζ ∈ (0, 1), define

ρ̃LB := (1− ζ) ρ1
LB + ζ; ρ̃HB := (1− ζ) ρ1

HB.

Note that ρ̃LB > ρ1
LB and ρ̃HB < ρ1

HB. Fix ζ ∈ (0, 1) such that ρ ∈ (ρ̃LB, ρ̃HB). Then, there is Nζ

such that for n > Nζ , F
n(ρ̃HB)− Fn(ρ̃LB) > 1− ζ. Fix n > Nζ . We show that for every k > 0,

ρn,kLB < ρ̃LB; ρn,kHB > ρ̃HB,

which proves (V.3). We prove the claim by induction. For k = 1, the claim follows directly because

ρ̃LB > ρ1
LB = ρn,1LB and ρ̃HB < ρ1

HB = ρn,1HB. Hence, Fn(ρn,1HB)− Fn(ρn,1LB) > 1− ζ. For k > 1, suppose

that ρn,k−1
LB < ρ̃LB and ρn,k−1

HB > ρ̃HB. Then, Fn(ρn,k−1
HB )− Fn(ρn,k−1

LB ) > 1− ζ. Using that

ρ̃LB = (1− ζ) (β̃Q̃out + βQ̃in) + ζ

and rewriting the relevant expressions, we obtain

ρ̃LB − ρn,kLB = β̃Q̃out(1− Fn(ρn,k−1
HA )) + βQ̃in(1− Fn(ρn,k−1

HB ))+

β̃Qout(ζ − Fn(ρn,k−1
LA ) + βQin(ζ − Fn(ρn,k−1

LB ) > 0;

and

ρn,kHB − ρ̃LB = β̃Qout(F
n(ρn,k−1

HA )− Fn(ρn,k−1
LA )− (1− ζ))+

βQin(Fn(ρn,k−1
HB )− Fn(ρn,k−1

LB )− (1− ζ)) + β̃Fn(ρn,k−1
LA + βFn(ρn,k−1

LB ) > 0.

The rest of the proof now follows because we can always take ζ < ε (and set Ñ = Nζ). The proof for

the case ρ ≥ 1
2 is analogous and thus omitted.
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Case 3: ρ ∈ (ρLA
∗, ρ∗LB) or ρ ∈ (ρ∗HB, ρ

∗
HA) Under σρ, majority players choose the action they

expect to be culturally salient while minority players choose a fixed action (H if ρ ∈ (ρLA
∗, ρ∗LB) and

L if ρ ∈ (ρ∗HB, ρ
∗
HA); Lemma A.5(b), (d)). We start with the case ρ ∈ (ρLA

∗, ρ∗LB). We use that

ρ∗LA = ρ1
LA and ρ∗LB = ρ1

LB. We claim that there exist ρ̃LA < ρ, ρ̃LB > ρ and Ñ such that for n > Ñ ,

ρ
(n)
LA ≤ ρ̃LA; ρ

(n)
LB ≥ ρ̃LB.

Again, this proves the claim. The existence of ρ̃LB with the desired properties is immediate: Because

ρ < ρn,1LB = ρ1
LB for all n and because ρn,kLB increases with k (by Lemma A.4), we can set ρ̃LB := ρ1

LB.

The existence of ρ̃LA follows by a similar argument as in Case 2: There is ζ ∈ (0, 1) sufficiently small

such that (1− ζ) · ρ2
LA + ζ < ρ. Fix ζ ∈ (0, 1) for which this holds and define

ρ̃LA := (1− ζ) · ρ2
LA + ζ.

Because ρ ∈ (ρ̃LA, ρ̃LB), there is Nζ such that for n > Nζ , F
n(ρ̃LB)− Fn(ρ̃LA) > 1− ζ. Fix n > Nζ .

We show that for every k > 0,

ρn,kLA ≤ ρ̃LA.

As before, we prove the claim by induction. For k = 1, we have ρn,1LA = ρ1
LA < ρ2

LA < ρ̃LA. For k > 1,

suppose ρn,k−1
LA < ρ̃LA so that Fn(ρn,k−1

LA ) < ζ. Rewriting the relevant expressions yields

ρ̃LA − ρn,kLA = β̃Q̃in(1− Fn(ρn,k−1
HA )) + βQ̃out(1− Fn(ρn,k−1

HB ))+

βQout(1− Fn(ρn,k−1
LB ) + β̃Qin(ζ − Fn(ρn,k−1

LA ) > 0.

Again, the result follows because we can always take ζ < ε. The proof for the case ρ ∈ (ρ1
HB, ρ

2
HA) is

analogous and therefore omitted.

It remains to consider the nongeneric cases ρ ∈ {ρ∗HA, ρ∗HB, ρ∗LB, ρ∗LA}. We can again group the

different cases together thanks to the symmetry of the cutoffs around 1
2 .

Case 4: ρ = ρ∗LB or ρ = ρ∗HB for β < β∗ We prove the result for ρ = ρ∗LB; the proof for the

case ρ = ρ∗HB is again similar and thus omitted. Suppose ρ = ρ∗LB and β < β∗. It is easy to verify

that ρn,2LB > ρ∗LB for all n. It then follows from Lemma A.4, ρ
(n)
LB > ρ∗LB for all n. As before, for ζ > 0

sufficiently small,

ρ̃LA := (1− ζ)ρ2
LA + ζ

satisfies ρ > ρ̃LA > ρ2
LA. Fix ζ > 0 such that this holds. Then, by a similar argument as before, there

is N1
ζ such that for all n > N1

ζ , we have ρ
(n)
LA ≤ ρ̃LA. Likewise, for η > 0 sufficiently small,

ρ̃HB := (1− η)ρ1
HB

satisfies ρ < ρ̃HB. Fix η > 0 for which this holds. Again, by a similar argument as before, there is

N2
η such that for all n > N2

η , we have ρ
(n)
HB ≥ ρ̃HB. It now follows that for every ξ > 0, there is N3

ξ

such that for n > N3
ξ , we have 1 − Fn(ρ

(n)
HB) < ξ and Fn(ρ

(n)
LA) < ξ. For ξ > 0, let n > N3

ξ . Then,

the conditional expectation of the share m of players who choose H in introspective equilibrium for a

player with impulse L from group B is greater than ρ1
LB (1− ξ) + 1

2 β̃Qin and thus

ρ
(n)
LB > ρ1

LB (1− ξ) + 1
2 β̃Qin,
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Fix ξ > 0 such that ρ1
LB (1− ξ) + 1

2 β̃Qin > ρ1
LB = ρ (which holds for ξ > 0 sufficiently small). Define

ρ̃LB := ρ1
LB (1− ξ) + 1

2 β̃Qin.

Then, the claim follows because for any ε > 0, we can choose ζ, η, ξ ∈ (0, ε); then, for n sufficiently

large, the share of minority players who choose H (regardless of their impulse) and the share of

majority players who choose the action they expect to be culturally salient is at least 1− ε.

Case 5: ρ = ρ∗LB or ρ = ρ∗HB for β ≥ β∗ Notice that ρ∗LA = ρ∗LB and ρ∗HA = ρ∗HB for β ≥ β∗

(Lemma A.5 and Figure 4) so this also covers the case ρ = ρ∗LA or ρ = ρ∗HA for β ≥ β∗. We prove

the result for ρ = ρ∗LB; the proof for the case ρ = ρ∗HB is again similar and thus omitted. Suppose

ρ = ρ∗LB and β ≥ β∗. For η > 0 sufficiently small,

(1− η)ρ1
LA + 1

2ρ
1
HA > ρ1

LB + η. (V.4)

Fix η > 0 for which this holds, and define

ρ̃LA := (1− η)ρ1
LA + 1

2ρ
1
HA.

We claim that ρ
(n)
LA > ρ̃LA for n sufficiently large. This proves the result: By taking η < ε, we find

that, for n sufficiently large, the share of players who choose H regardless of their impulse is at least

1 − ε. So, it remains to prove the claim. As before, there is Nη such that Fn(ρ̃LA) > 1 − η. Fix

n > Nη. Then, the conditional expectation at level 2 of the share of players choosing H for a player

from group A with impulse L is

β̃Q̃inF
n(ρ1

HA) + βQ̃outF
n(ρ1

HB) + βQoutF
n(ρ1

LB) + β̃QinF
n(ρ1

LA) > (1 − η)ρ1
LA + 1

2ρ
1
HA.

Hence, by (V.4), ρn,2LA > ρ̃LA. By Lemma A.4, ρ
(n)
LA > ρ̃LA.

Case 6: ρ = ρ∗LA or ρ = ρ∗HA for β < β∗ The proof for this case is a bit more involved,

because unlike for the other cases, the equilibrium cutoff (i.e., ρ∗HA or ρ∗LA) for the game with identical

preferences is not equal to the level-1 cutoff (i.e., ρ1
HA or ρ1

LA); hence, the fact that ρn,1IG = ρ1
IG for all

I,G and n (which we used extensively in the proof of other cases) is of little use here. To overcome this,

this part of the proof utilizes that the distributions Fn have full support and satisfy condition (A.9).

We prove the result for ρ = ρ∗LA; the proof for the case ρ = ρ∗HA is again similar and thus omitted.

Suppose ρ = ρ∗LA and β < β∗. First note that if we show that, for n sufficiently large, ρn,kLA > ρ2
LA for

some k ≥ 2, then we are done. To see this, suppose that there exist N and k ≥ 2 such that for n > N ,

ρn,kLA > ρ2
LA. Then, by symmetry, for n > N , Fn(ρn,kLA) > 1

2 ; and thus, by a similar argument as before,

for every η > 0, there is Nη such that for n > Nη, ρ
n,k+1
LA > (1−η)ρ2

LA+ 1
2 β̃Qin = 1−η− (1

2 −η) β̃Qin.

For η > 0 sufficiently small, the right-hand side of this inequality is greater than ρ2
LA; fix η > 0

such that this holds. Then, by Lemma A.4, for every ζ > 0, there is Nζ such that for n > Nζ ,

Fn(ρ
(n)
LA) > 1 − ζ. This proves the result: By taking ζ < ε, we find that, for n sufficiently large, the

share of players who choose H regardless of their impulse is at least 1−ε. It remains to show that, for

n sufficiently large, ρn,kLA > ρ2
LA for some k ≥ 2. If ρn,2LA > ρ2

LA for n sufficiently large, then this holds

trivially. So suppose this is not the case. It is easy to verify that, for every η > 0, there is Nη such

10



that for n > Nη, ρ
n,2
LA > (1 − η) ρ2

LA. Fix η > 0 such that ρ − (1 − η)ρ2
LA < ρ1

LB − ρ and fix n > Nη.

Since the distribution Fn(ρj) has full support, we can write

ρn,3LA = ρ2
LA + Fn(ρn,2LA)

[
β̃Qin − β̃Q̃in

(
1− Fn(ρn,2HA)

Fn(ρn,2LA)

)
−

βQ̃out

(
1− Fn(ρn,2HB)

Fn(ρn,2LA)

)
− βQout

(
1− Fn(ρn,2LB)

Fn(ρn,2LA)

)]
. (V.5)

Notice that ρn,2LB ≥ ρ1
LB (Lemma A.4) and that ρn,2HA ≥ ρn,2HB ≥ ρn,2LB. By construction, ρ − ρn,2LA <

ρ− (1− η)ρ2
LA < ρ1

LB − ρ. But then, by (A.9), ρn,3LA > ρ2
LA for n sufficiently large. �

V.4 Proof of Lemma A.9

We define the Bellman equations for level k = 1. Given a posterior belief µ ∈ [0, 1] that the other

player has an impulse to cooperate in the current period, the value function at level k = 1 is

V (µ) = max
{
µ
[
(1− δ)udc + δ V (0)

]
+ (1− µ)

[
(1− δ)udd + δ V (0)

]
,

µ
[
(1− δ)ucc + δ V (1)

]
+ (1− µ)

[
(1− δ)ucd + δ V (0)

]}
.

This yields

V (0) = udd; V 1(1) =

{
ucc if δ ≥ δGT ;

(1− δ)udc + δ udd otherwise;

where

δGT :=
udc − ucc

udc − udd)

is the standard grim-trigger threshold. For µ ∈ (0, 1),

V (µ) =

{
µ [(1− δ)ucc + δ ucc] + (1− µ) [(1− δ)ucd + δ udd] if δ ≥ δµ;

µ [(1− δ)udc + δ udd] + (1− µ) [(1− δ)udd + δ udd] otherwise;

where

δµ :=
µ(udc − ucc) + (1− µ) (udd − ucd)

µ (udc − udd) + (1− µ) (udd − ucd)
,

which is decreasing in µ and is strictly greater than the grim-trigger threshold δGT whenever µ < 1.

Then, if we denote by µ0
IG the posterior belief for a player with impulse I from group G that the

other player has an impulse to cooperate at t = 0, then the discounted sum of expected payoffs to

players with impulse I from group G at level 1 is V (µ0
IG). It is then easy to check that, at level 1, a

player with impulse I from group G chooses the grim trigger strategy if δ ≥ δµ0IG and defect in every

period if δ ≤ δµ0IG
. Likewise, if µ0

IG is the posterior belief for a player with impulse I from group G

that the other player has an impulse to choose H in the reduced game, then, at level 1, a player with

impulse I from group G chooses the grim trigger strategy if δ ≥ δµ0IG
and defect in every period if

δ ≤ δµ0IG
. For k > 1, suppose, inductively that at level k − 1, a player with impulse I from group G

chooses the grim trigger strategy if δ ≥ δµk−2
IG

and defect in every period if δ ≤ δµk−2
IG

, where µk−2
IG is

11



the player’s posterior that the other player chooses the grim trigger strategy at level k − 2. Then, if

we denote by µk−1
IG the posterior belief for a player with impulse I from group G that the other player

chooses the grim trigger strategy at level k−1, the discounted sum of expected payoffs to players with

impulse I from group G at level k is V (µk−1
IG ). Then, it is again easy to check that, at level k, a player

with impulse I from group G chooses the grim trigger strategy if δ ≥ δµk−1
IG

and defect in every period

if δ ≤ δµkIG . Likewise, if µk−1
IG is the posterior belief for a player with impulse I from group G that the

other player chooses H at level k − 1 in the reduced game, then, at level k, a player with impulse I

from group G chooses the grim trigger strategy if δ ≥ δµk−1
IG

and defect in every period if δ ≤ δµk−1
IG

. By

a similar argument as in the proof of Lemma A.5, the introspective process converges within finitely

many steps. Hence, in any introspective equilibrium of the repeated game, players either choose the

grim trigger strategy or they defect in every period; moreover, they choose the grim trigger strategy

if and only if they choose H in the introspective equilibrium of the reduced game. �
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