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This appendix contains some results not included in Kets, Kager, and Sandroni (2021), “The

Value of a Coordination Game.” Unless stated otherwise, all references to sections, results,

etcetera, are to Kets et al. (2021).

Appendix I and Appendix II show that the results in Sections 3.3.1–3.3.2 are robust to alter-

nate specifications of the economic problem. Appendix III shows that introspective equilibrium

is asymptotically stable except in knife-edge cases.

I Investment

This appendix shows that our results in Section 3.3.1 continue to hold if the investment subsidy is

replaced by an investment “bonus” that players receive when they successfully invest. Formally,

consider the game form ub = (u11 + b, u12, u21, u22), where b ≥ 0 is the bonus. The following result

characterizes the conditions under which miscoordination is more costly than coordination failure

in the sense that the value decreases as we move from the regime with coordination failure to

the regime with miscoordination (i.e., as ρ falls to ρ ) when the bonus increases.

Theorem I.1 (Investment Bonus). Fix an introspective type space that satisfies Assump-

tions 1–5 and is such that there is a positive probability of investment at ρ (i.e., τ < 1). Suppose

there is coordination failure if there is no investment bonus (i.e., ρ > ρ). Then, the value strictly

decreases with the investment bonus b as it induces miscoordination (i.e., the dominance param-

eter falls to ρ) if and only if the off-diagonal payoffs are sufficiently small and ρ is not too high.

That is, there is a ρc ∈ (ρ,1) such that for all u11 and u22 with u11 ≥ u22 and for all ρ > ρ, there

exist u∗12 and u∗21 such that the following holds: For any game form ub = (u11 + b, u12, u21, u22)

with dominance parameter ρ at b = 0, as b increases, the value falls below u22 at ρ if and only if

ρ < ρc, u12 < u∗12, and u21 < u∗21.
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Proof. Let (p11, p12, p21, p22 ) be the probability distribution over action profiles in introspective

equilibrium for the given introspective type space when the dominance parameter is ρ. Recall

that this distribution depends only on the type space. Define the dominance parameter ρc by

ρc ∶= ρ
p11 + p21
p11

.

Clearly, since p11 and p21 are strictly positive, we have ρc > ρ. Moreover, it follows from Eq. (8)

in the proof of Proposition 3.1 that ρc < 1. Let ub = (u11 + b, u12, u21, u22), where b ≥ 0. Suppose

that in the absence of a bonus there is coordination failure in introspective equilibrium, i.e.,

ρ = ρ(u0) > ρ. As b increases, the dominance parameter decreases. Let b be the bonus for which

the dominance parameter attains the value ρ. Then,

1 − ρ

ρ
=
u11 − u21
u22 − u12

and
1 − ρ

ρ
=
u11 + b − u21
u22 − u12

. (I.1)

The difference in value between the games with b = 0 (with coordination failure) and with b = b

(with miscoordination) is

∆ = p11 (u11 + b ) + p12 u12 + p21 u21 + p22 u22 − u22

= p11 (u11 + b − u21) − (p11 + p12 )(u11 − u21) + (p11 + p12 )(u11 − u22) − p12 (u22 − u12),

where we have used p12 = p21 and p22 = 1−p11−p12−p21. Applying (I.1) to the factors u11+b−u21
and u11 − u21 (and reordering terms) gives

∆ = (p11 + p12 )(u11 − u22) − (
p11 + p12

ρ
−
p11
ρ

)(u22 − u12).

Hence, ∆ < 0 if and only if

u11 − u22
u22 − u12

<
1

ρ
−

p11
ρ (p11 + p12)

=
ρc − ρ

ρρc
.

As the left-hand side is non-negative, ∆ can be negative only if ρ < ρc. In that case, ∆ < 0 is

equivalent to
u22 − u12

ρ
=
u11 − u21

1 − ρ
>

ρc

ρc − ρ
(u11 − u22),

where the equality follows from (I.1). ◻

II Collusion

We consider two other commonly-used models of collusion. In addition, because models of

collusion have the structure of a social dilemma, we also study the classic repeated prisoner’s

dilemma. The results demonstrate that our results in Section 3.3.2 are robust.
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II.1 Tourists and natives

This appendix studies the effects of a change in the competitiveness of the market as measured

by the fraction of consumers who buy from the firm with the lowest price. We consider a

simple model of price insensitive “tourists” and best-price shopping “natives,” or, closer to most

applications, loyal buyers and switchers.1 There are two firms, labeled by i ∈ {1,2}. In each

period t̃ = 0,1, . . ., firms choose a price p ∈ {H,L}, with H > L > 0, and a mass of consumers (of

measure 1) decides which firm to buy from. A fraction ms ∈ (0,1) of consumers are switchers :

they buy from the firm with the lowest price. In addition, each firm i has a mass m` ∈ (0, 12) of

loyal buyers (i.e., ms + 2m` = 1). The marginal cost of each firm is equal to 0, and we normalize

by setting L = 1. Then, the payoffs in the one-shot game are given by

H L

H (m` +
1
2ms)H, (m` +

1
2ms)H m`H,m` +ms

L m` +ms,m`H m` +
1
2ms,m` +

1
2ms

As in Section 3.3.2, we assume that the one-shot game has the structure of a prisoner’s

dilemma (i.e., the low price L is a strictly dominant strategy for both firms). This is the case if

and only if H < 2(1 −m`). Thus, in the absence of repetition, firms compete for the market.

For the repeated game, we again consider a collusive strategy and a cheating strategy. Under

the collusive strategy, the firm chooses the high price H in every period as long as both firms

chose the high price in all past periods; otherwise, it charges the low price L. Under the

cheating strategy, the firm chooses the low price L in every period. Again, we identify the

collusive strategy with s1 and the cheating strategy with s2. Then, using that m` +
1
2ms =

1
2 and

m` +ms = 1 −m`, the payoffs in the repeated game are given by

s1 s2

s1 1
2H (1 − δ)m`H + 1

2δ

s2 (1 − δ)(1 −m`) +
1
2δ

1
2

where we have listed only the row player’s payoffs. We again assume that collusion can be

sustained as a subgame perfect equilibrium, i.e., δ > (2(1 − m`) − H)/(1 − 2m`). Then, the

repeated game can be viewed as a coordination game, and coordination failure corresponds to

both firms choosing the low price while miscoordination corresponds to one firm choosing the

collusive strategy and the other firm choosing the cheating strategy.

The following result shows that, starting from a game with coordination failure, any change

in payoff parameters that makes collusion less risky (i.e., decreases ρ) leads to a strict increase

in the value even if it induces miscoordination:
1See Salop and Stiglits, 1977, Bargains and ripoffs: A model of monopolistically competitive price dispersion,

Review of Economic Studies, 44, pp. 493–510.
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Theorem II.1 (Collusion: Tourists & Natives). Fix an introspective type space that sat-

isfies Assumptions 1–5 and a game form such that there is coordination failure in introspective

equilibrium. Then any change in payoff parameters that makes the dominance parameter smaller

than ρ strictly increases the value of the game.

Proof. As in Section 3.3.2, we consider a change of payoff parameters such that the dominance

parameter decreases from ρ > ρ to ρ′ < ρ. Since u11 > u22, the result clearly holds if the change

in payoff parameters is such that firms choose the high price in introspective equilibrium (i.e.,

ρ′ < ρ ). So suppose ρ′ ∈ [ρ, ρ ), and let δ and δ′ be the discount factors in the games with

dominance parameters ρ and ρ′, respectively. Similarly, let m` and m′` be the fractions of loyal

buyers for a firm in the games with dominance parameters ρ and ρ′, respectively. Then, the

inequality (13) in Lemma C.3 gives

∆ > (p′11 + p
′
12)(1 − δ

′)(1
2 −m

′
`).

The result then follows by noting that the right-hand side is positive. ◻

Examples of changes in the dominance parameter that make collusion less risky include an

increase in the fraction m` of loyal buyers, an increase in the discount factor δ, and an increase

in the high price H. Theorem II.1 shows that any of these changes makes firms better off.

II.2 Homogeneous goods

This appendix studies the limiting case of Section 3.3.2 where the two firms produce identical

goods (i.e., b = c). To avoid problems with the nonexistence of a pure Nash equilibrium, we

assume that firms can undercut each other only by a fixed amount 1
2η > 0 (taken to be small,

i.e., η ≪ a). The model is otherwise the same as in Section 3.3.2: In the repeated game, the

collusive strategy σ∗ is to choose the monopoly price p∗ in every period as long as both firms chose

the monopoly price in all past periods, and to choose the competitive price pN = 0 otherwise.

The cheating strategy σc is to choose pc ∶= p∗ − 1
2η in every period as long as both firms chose

the monopoly price in all past periods, and to choose the competitive price pN = 0 otherwise.

We normalize and set b = 1. Then, if we again identify the collusive and the cheating strategy

with s1 and s2, the payoffs in the repeated game are given by

s1 s2

s1 1
8a

2 0

s2 1
4(1 − δ)(a

2 − η2) 1
8(1 − δ)(a

2 − η2)

where we have listed only the row player’s payoffs. We again assume that collusion can be

sustained as a subgame perfect equilibrium, i.e., δ > (a2 − 2η2)/(2a2 − 2η2). As before, the
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repeated game can be viewed as a coordination game, and coordination failure corresponds to

both firms choosing the cheating strategy while miscoordination corresponds to one firm choosing

the collusive strategy and the other firm choosing the cheating strategy.

The following result considers the effects of an increase in the discount factor δ:

Theorem II.2 (Collusion: Homogeneous Goods). Fix an introspective type space that sat-

isfies Assumptions 1–5 and let δ, δ′ ∈ ( (a2−2η2)/(2a2−2η2),1 ) be such that there is coordination

failure in introspective equilibrium when the discount factor is δ (i.e, ρ(δ) > ρ) but not when the

discount factor is δ′ (i.e., ρ(δ′) < ρ). Then, if either δ′ is so large that ρ(δ′) < ρ or δ′ − δ is

sufficiently small, the value of the game with discount factor δ′ (with miscoordination) is strictly

larger than the value of the game with discount factor δ (with coordination failure).

Proof. Define ρ ∶= ρ(δ) and ρ′ ∶= ρ(δ′) to be the dominance parameters for the games with

discount factors δ and δ′, respectively. Again, the result clearly holds if δ′ is so large that firms

choose the collusive strategy in introspective equilibrium (i.e., ρ′ < ρ ). So suppose ρ′ ∈ [ρ, ρ ).

Let ε ∶= δ′ − δ be the difference between the two discount parameters, and let δ be the discount

parameter for which ρ( δ ) = ρ. Substituting the payoffs into Eq. (13) from Lemma C.3 gives

8∆ > (p′11 + p
′
12)(1 − δ

′)(a2 − η2) − (δ′ − δ)(a2 − η2)

> (p11 + p12 )(1 − δ )(a
2 − η2) − ε (p11 + p12 )(a

2 − η2) − ε (a2 − η2),

(as in the proof of Theorem 3.5). It follows that ∆ > 0 if the difference ε between discount

parameters is sufficiently small. ◻

II.3 Prisoner’s dilemma

This appendix studies the classic prisoner’s dilemma. In each period t̃ = 0,1, . . ., players can

either cooperate (play c) or defect (play d ). The payoffs in the one-shot game are given by

c d

c C,C S,T

d T,S D,D

where T > C > D > S. In the repeated game, players choose between a cooperative strategy

and always defect. Under the cooperative (grim trigger) strategy, the player cooperates in every

period as long as both players cooperated in all past periods; otherwise, he defects. Under always

defect, the player defects in every period. Again, we identify the cooperative strategy with s1

and always defect with s2. Then, the payoffs in the repeated game are given by

s1 s2

s1 C (1 − δ)S + δD

s2 (1 − δ)T + δD D
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where we have listed only the row player’s payoffs. We again assume that cooperation can

be sustained as a strict subgame perfect equilibrium, i.e., δ > (T − C)/(T −D). We can then

view the repeated game as a coordination game, where coordination failure corresponds to both

players choosing to always defect while miscoordination corresponds to one player trying to

initiate cooperation (i.e., choosing s1) and the other player choosing to always defect. It will

be convenient to write (δ,C,S, T,D) for the game form u and to denote the corresponding

dominance parameter by ρ(δ,C,S, T,D).

We consider the effect of two types of changes: An increase in the discount factor δ and a

decrease in the payoff D when cooperation breaks down. Both types of changes make cooperation

less risky (i.e., ρ decreases with δ and increases with D). Hence, if we start from a game with

coordination failure, both these changes can induce miscoordination. The following result shows

that, again, players are better off when there is miscoordination than if there is coordination

failure:

Theorem II.3 (Prisoner’s Dilemma). Fix an introspective type space that satisfies Assump-

tions 1–5 and a game form u = (δ,C,S, T,D) with δ ∈ ( (T −C)/(T −D),1 ), and let δ′ ∈ (δ,1)

and D′ <D.

(a) Suppose that there is coordination failure in introspective equilibrium when the discount

factor is δ but not when it is δ′ (i.e., ρ(δ,C,S, T,D) > ρ and ρ(δ′,C,S, T,D) < ρ). Then,

the value of the game with the discount factor δ′ is strictly larger than that of the game

with the discount factor δ.

(b) Suppose that there is coordination failure in introspective equilibrium when the defection

payoff is D but not when it is D′ (i.e., ρ(δ,C,S, T,D) > ρ and ρ(δ,C,S, T,D′) < ρ).

Then, the value of the game when the defection payoff is D′ is strictly larger than when

the defection payoff is D if either D′ is so large that ρ(δ,C,S, T,D′) < ρ or D − D′ is

sufficiently small.

Proof. It will be convenient to combine the proofs of (a) and (b) by considering the game forms

u = (δ,C,S, T,D) and u′ = (δ′,C,S, T,D′). Then, with some abuse of notation, we can take

δ′ > δ and D′ = D for proving (a), and δ′ = δ and D′ < D for proving (b). Write ρ and ρ′ for the

dominance parameters associated with u and u′, respectively. As before, if the change in payoff

parameters is sufficiently large (i.e., ρ′ < ρ ), the result follows from the fact that u11 > u22. So

suppose ρ′ ∈ [ρ, ρ ). Then we can again apply Lemma C.3. In this case, Eq. (13) gives

∆ > (p′11 + p
′
12)(1 − δ

′)(T −D′) − (D −D′)

> (p11 + p12 )(1 − δ
′)(T −D) + (p11 + p12 )(1 − δ

′)(D −D′) − (D −D′).

So, if δ′ > δ and D′ = D, we have ∆ > 0, proving (a); and if δ′ = δ and D′ < D, then ∆ > 0

provided D is sufficiently close to D′, proving (b). ◻
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III Asymptotic stability

This section shows that introspective equilibrium is asymptotically stable whenever the rank

belief function F (t ∣ t) has a finite number of local extrema. Fix a game G = (u,T ), where

T = (F, τ 0), and let τ be the equilibrium threshold for the introspective equilibrium. That is, τ

is the limit of the level-k thresholds τ k as k →∞. For every t ∈ T and ε > 0, let

Bε(t) ∶= {t′ ∈ T ∶ ∣t − t′∣ < ε}

be the ε-ball around t. We say that introspective equilibrium is asymptotically stable if it is

both attracting and Lyapunov stable, i.e., if the equilibrium threshold τ satisfies the following

conditions:

(ATTR) There is an ε > 0 such that for any τ̃ 0 ∈ Bε(τ), the introspective process {τ̃ k}k starting

at τ̃ 0 converges to τ , i.e., limk→∞ τ̃ k = τ ; and

(LYAP) For every η > 0, there is a δ > 0 such that if τ̃ 0 ∈ Bδ(τ), then the introspective

process {τ̃ k}k starting at τ̃ 0 remains in Bη(τ), i.e., τ̃ k ∈ Bη(τ) for all k ≥ 0.

The following result shows that introspective equilibrium is asymptotically stable for generic

payoff parameters:

Proposition III.1 (Asymptotic Stability). Under Assumptions 1–4, provided that the rank

belief function F (t ∣ t) has only finitely many local extrema, introspective equilibrium is (generi-

cally) asymptotically stable in coordination games.

Proof. We show that introspective equilibrium satisfies (ATTR) and (LYAP) except when

F (τ 0 ∣ τ 0) = 1 − ρ or F (τ ∣ τ) is a local extremum. Since, by assumption, there are only

finitely many values for ρ such that F (τ 0 ∣ τ 0) = 1−ρ or 1−ρ is a local extremum of F (t ∣ t), this

establishes that introspective equilibrium is asymptotically stable for generic u. So suppose that

F (τ 0 ∣ τ 0) ≠ 1−ρ and that F (τ ∣ τ) is not a local maximum or minimum. We start with (ATTR).

First suppose τ = 0; the proof for τ = 1 is similar and thus omitted. By Assumption 2, we have

τ 0 > 0, and by the proof of Proposition 2.1, F (t ∣ t) < 1−ρ for all t ∈ [0, τ 0]. Then, for any level-0

threshold τ̃ 0 ∈ Bτ0(τ), the introspective process converges to τ ; so, the claim holds with ε = τ 0.

Next suppose τ ∈ (0,1). We will construct a nonempty open interval (τmin, τmax) containing τ

such that, starting from any level-0 threshold τ̃ 0 ∈ (τmin, τmax), the introspective process con-

verges to τ ; this shows that the claim holds with ε ∶= min{τ − τmin, τmax − τ} > 0. We prove the

result for the case where F (τ 0 ∣ τ 0) < 1−ρ; the proof for the case when F (τ 0 ∣ τ 0) > 1−ρ is similar

and thus omitted. Again, by the proof of Proposition 2.1, τ 0 > τ , the level-k thresholds {τ k}

form a decreasing sequence that converges to τ , F (τ ∣ τ) = 1 − ρ, and F (t ∣ t) is strictly smaller
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than 1−ρ for all t in the interval (τ, τ 0); so, we can set τmax = τ 0, where we note that τmax > τ . We

next construct τmin < τ . By the continuity of F (t ∣ t) on [0, τ] (see the proof of Proposition 3.1),

there is a t ∈ [0, τ] such that F (t ∣ t) is a local maximum. We define

τmin ∶= sup{t ∈ [0, τ] ∶ F (t ∣ t) is a local maximum}.

Since, by assumption, F (t ∣ t) has a finite number of local extrema and F (τ ∣ τ) is not a

local extremum, τmin is in fact strictly smaller than τ . Since F (τ ∣ τ) = 1 − ρ, it follows that

F (t ∣ t) > 1 − ρ for all t ∈ (τmin, τ), so (again by the proof of Proposition 2.1) any introspective

process {τ̃ k}k starting at a level-0 threshold τ̃ 0 ∈ (τmin, τ] converges to τ , as required.

The fact that introspective equilibrium satisfies (LYAP) now follows immediately. Fix η > 0,

and let ε > 0 be as constructed in the proof of property (ATTR). By the argument above, for

any τ̃ 0 ∈ Bε(τ), the introspective process {τ̃ k}k starting at τ̃ 0 has the property that ∣τ − τ̃ k∣

decreases with k. Hence, the claim holds for δ ∶= min{η, ε}. ◻
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